Chinaunix首页 | 论坛 | 博客
  • 博客访问: 284422
  • 博文数量: 89
  • 博客积分: 1380
  • 博客等级: 中尉
  • 技术积分: 705
  • 用 户 组: 普通用户
  • 注册时间: 2009-07-10 11:04
文章分类

全部博文(89)

文章存档

2014年(4)

2011年(1)

2010年(42)

2009年(42)

我的朋友

分类: LINUX

2009-08-10 10:33:57

定义:
linux内核中设置了一组用于实现系统功能的子程序,成为系统调用。系统调用和普通库函数调用非常相似,只是系统调用由操作系统核心提供,运行于核心态,而普通的函数调用由函数库或用户自己提供,运行于用户态。

如何工作:
一般的,进程是不能访问内核的。它不能访问内核所占内存空间也不能调用内核函数。CPU硬件决定了这些(这就是为什么它被称作"保护模式")。系统调用是这些规则的一个例外。其原理是进程先用适当的值填充寄存器,然后调用一个特殊的指令,这个指令会跳到一个事先定义的内核中的一个位置(当然,这个位置是用户进程可读但是不可写的)。在Intel CPU中,这个由中断0x80实现。硬件知道一旦你跳到这个位置,你就不是在限制模式下运行的用户,而是作为操作系统的内核--所以你就可以为所欲为。 进程可以跳转到的内核位置叫做sysem_call。这个过程检查系统调用号,这个号码告诉内核进程请求哪种服务。然后,它查看系统调用表 (sys_call_table)找到所调用的内核函数入口地址。接着,就调用函数,等返回后,做一些系统检查,最后返回到进程(或到其他进程,如果这个进程时间用尽)。如果你希望读这段代码,它在<内核源码目录>/kernel/entry.S,Entry(system_call)的下一行。

什么是errno:
为防止和正常的返回值混淆,系统调用并不直接返回错误码,而是将错误码放入一个名为errno的全局变量中。如果一个系统调用失败,你可以读出errno的值来确定问题所在。
errno不同数值所代表的错误消息定义在errno.h中,你也可以通过命令"man 3 errno"来察看它们。
需要注意的是,errno的值只在函数发生错误时设置,如果函数不发生错误,errno的值就无定义,并不会被置为0。另外,在处理errno前最好先把它的值存入另一个变量,因为在错误处理过程中,即使像printf()这样的函数出错时也会改变errno的值。

###################################################################################

进程配置有唯一的进程控制块PCB,由proc结构和usr结构组成。
下面依次介绍进程相关的系统调用:
1:fork()函数          创建一个子进程

	#include /* 提供类型pid_t的定义 */
#include /* 提供函数的定义 */
pid_t fork(void);

只看fork的名字,可能难得有几个人可以猜到它是做什么用的。fork系统调用的作用是复制一个进程。当一个进程调用它,完成后就出现两个几乎一模一样的进程,我们也由此得到了一个新进程。据说fork的名字就是来源于这个与叉子的形状颇有几分相似的工作流程。
在Linux 中,创造新进程的方法只有一个,就是我们正在介绍的fork。其他一些库函数,如system(),看起来似乎它们也能创建新的进程,如果能看一下它们的源码就会明白,它们实际上也在内部调用了fork。包括我们在命令行下运行应用程序,新的进程也是由shell调用fork制造出来的。fork有一些很有意思的特征,下面就让我们通过一个小程序来对它有更多的了解。

/* fork_test.c */
#include
#inlcude
main()
{
pid_t pid;

/*此时仅有一个进程*/
pid=fork();
/*此时已经有两个进程在同时运行*/
if(pid<0)
printf("error in fork!");
else if(pid==0)
printf("I am the child process, my process ID is %d\n",getpid());
else
printf("I am the parent process, my process ID is %d\n",getpid());
}
编译并运行:
$gcc fork_test.c -o fork_test
$./fork_test
I am the parent process, my process ID is 1991
I am the child process, my process ID is 1992
看这个程序的时候,头脑中必须首先了解一个概念:在语句pid=fork()之前,只有一个进程在执行这段代码,但在这条语句之后,就变成两个进程在执行了,这两个进程的代码部分完全相同,将要执行的下一条语句都是if(pid==0)……。

两个进程中,原先就存在的那个被称作“父进程”,新出现的那个被称作“子进程”。父子进程的区别除了进程标志符(process ID)不同外,变量pid的值也不相同,pid存放的是fork的返回值。fork调用的一个奇妙之处就是它仅仅被调用一次,却能够返回两次,它可能有三种不同的返回值:

  1. 在父进程中,fork返回新创建子进程的进程ID;
  2. 在子进程中,fork返回0;
  3. 如果出现错误,fork返回一个负值;
#include
void exit(int status);

不像fork那么难理解,从exit的名字就能看出,这个系统调用是用来终止一个进程的。无论在程序中的什么位置,只要执行到exit系统调用,进程就会停止剩下的所有操作,清除包括PCB在内的各种数据结构,并终止本进程的运行。请看下面的程序:

/* exit_test1.c */
#include
main()
{
printf("this process will exit!\n");
exit(0);
printf("never be displayed!\n");
}

编译后运行:

$gcc exit_test1.c -o exit_test1
$./exit_test1
this process will exit!

我们可以看到,程序并没有打印后面的"never be displayed!\n",因为在此之前,在执行到exit(0)时,进程就已经终止了。
exit 系统调用带有一个整数类型的参数status,我们可以利用这个参数传递进程结束时的状态,比如说,该进程是正常结束的,还是出现某种意外而结束的,一般来说,0表示没有意外的正常结束;其他的数值表示出现了错误,进程非正常结束。我们在实际编程时,可以用wait系统调用接收子进程的返回值,从而针对不同的情况进行不同的处理。关于wait的详细情况,我们将在以后的篇幅中进行介绍。


 


###################################################################




作为系统调用而言,_exit和exit是一对孪生兄弟。
这时随便一个懂得C语言并且头脑清醒的人都会说,_exit和exit没有任何区别,但我们还要讲一下这两者之间的区别,这种区别主要体现在它们在函数库中的定义。_exit在Linux函数库中的原型是:

	#include
void _exit(int status);
和exit比较一下,exit()函数定义在 stdlib.h中,而_exit()定义在unistd.h中,从名字上看,stdlib.h似乎比unistd.h高级一点,那么,它们之间到底有什么区别呢?让我们先来看流程图,通过下图,我们会对这两个系统调用的执行过程产生一个较为直观的认识。

从图中可以看出,_exit()函数的作用最为简单:直接使进程停止运行,清除其使用的内存空间,并销毁其在内核中的各种数据结构;exit()函数则在这些基础上作了一些包装,在执行退出之前加了若干道工序,也是因为这个原因,有些人认为exit已经不能算是纯粹的系统调用。
exit()函数与_exit()函数最大的区别就在于exit()函数在调用exit系统调用之前要检查文件的打开情况,把文件缓冲区中的内容写回文件,就是图中的“清理I/O缓冲”一项。
在Linux 的标准函数库中,有一套称作“高级I/O”的函数,我们熟知的printf()、fopen()、fread()、fwrite()都在此列,它们也被称作“缓冲I/O(buffered I/O)”,其特征是对应每一个打开的文件,在内存中都有一片缓冲区,每次读文件时,会多读出若干条记录,这样下次读文件时就可以直接从内存的缓冲区中读取,每次写文件的时候,也仅仅是写入内存中的缓冲区,等满足了一定的条件(达到一定数量,或遇到特定字符,如换行符\n和文件结束符EOF),再将缓冲区中的内容一次性写入文件,这样就大大增加了文件读写的速度,但也为我们编程带来了一点点麻烦。如果有一些数据,我们认为已经写入了文件,实际上因为没有满足特定的条件,它们还只是保存在缓冲区内,这时我们用_exit()函数直接将进程关闭,缓冲区中的数据就会丢失,反之,如果想保证数据的完整性,就一定要使用exit()函数。

请看以下例程:

/* exit2.c */
#include
main()
{
printf("output begin\n");
printf("content in buffer");
exit(0);
}

编译并运行:

$gcc exit2.c -o exit2
$./exit2
output begin
content in buffer
/* _exit1.c */
#include
main()
{
printf("output begin\n");
printf("content in buffer");
_exit(0);
}

编译并运行:

$gcc _exit1.c -o _exit1
$./_exit1
output begin
##########################################################
#include  /* 提供类型pid_t的定义 */
#include
pid_t wait(int *status)
进程一旦调用了wait,就立即阻塞自己,由wait自动分析是否当前进程的某个子进程已经退出,如果让它找到了这样一个已经变成僵尸的子进程,wait就会收集这个子进程的信息,并把它彻底销毁后返回;如果没有找到这样一个子进程,wait就会一直阻塞在这里,直到有一个出现为止。
参数status用来保存被收集进程退出时的一些状态,它是一个指向int类型的指针。但如果我们对这个子进程是如何死掉的毫不在意,只想把这个僵尸进程消灭掉,(事实上绝大多数情况下,我们都会这样想),我们就可以设定这个参数为NULL,就象下面这样:
		pid = wait(NULL);
如果成功,wait会返回被收集的子进程的进程ID,如果调用进程没有子进程,调用就会失败,此时wait返回-1,同时errno被置为ECHILD。


下面就让我们用一个例子来实战应用一下wait调用:

/* wait1.c */
#include
#include
#include
#include
main()
{
pid_t pc,pr;
pc=fork();
if(pc<0) /* 如果出错 */
printf("error ocurred!\n");
else if(pc==0){ /* 如果是子进程 */
printf("This is child process with pid of %d\n",getpid());
sleep(10); /* 睡眠10秒钟 */
}
else{ /* 如果是父进程 */
pr=wait(NULL); /* 在这里等待 */
printf("I catched a child process with pid of %d\n"),pr);
}
exit(0);
}

编译并运行:

$ cc wait1.c -o wait1
$ ./wait1
This is child process with pid of 1508
I catched a child process with pid of 1508
可以明显注意到,在第2行结果打印出来前有10 秒钟的等待时间,这就是我们设定的让子进程睡眠的时间,只有子进程从睡眠中苏醒过来,它才能正常退出,也就才能被父进程捕捉到。其实这里我们不管设定子进程睡眠的时间有多长,父进程都会一直等待下去,读者如果有兴趣的话,可以试着自己修改一下这个数值,看看会出现怎样的结果。

如果参数status的值不是NULL,wait就会把子进程退出时的状态取出并存入其中,这是一个整数值(int),指出了子进程是正常退出还是被非正常结束的(一个进程也可以被其他进程用信号结束,我们将在以后的文章中介绍),以及正常结束时的返回值,或被哪一个信号结束的等信息。由于这些信息被存放在一个整数的不同二进制位中,所以用常规的方法读取会非常麻烦,人们就设计了一套专门的宏(macro)来完成这项工作,下面我们来学习一下其中最常用的两个:

1,WIFEXITED(status) 这个宏用来指出子进程是否为正常退出的,如果是,它会返回一个非零值。

(请注意,虽然名字一样,这里的参数status并不同于wait唯一的参数--指向整数的指针status,而是那个指针所指向的整数,切记不要搞混了。)

2, WEXITSTATUS(status) 当WIFEXITED返回非零值时,我们可以用这个宏来提取子进程的返回值,如果子进程调用exit(5)退出,WEXITSTATUS(status) 就会返回5;如果子进程调用exit(7),WEXITSTATUS(status)就会返回7。请注意,如果进程不是正常退出的,也就是说, WIFEXITED返回0,这个值就毫无意义。

下面通过例子来实战一下我们刚刚学到的内容:

/* wait2.c */
#include
#include
#include
main()
{
int status;
pid_t pc,pr;
pc=fork();
if(pc<0) /* 如果出错 */
printf("error ocurred!\n");
else if(pc==0){ /* 子进程 */
printf("This is child process with pid of %d.\n",getpid());
exit(3); /* 子进程返回3 */
}
else{ /* 父进程 */
pr=wait(&status);
if(WIFEXITED(status)){ /* 如果WIFEXITED返回非零值 */
printf("the child process %d exit normally.\n",pr);
printf("the return code is %d.\n",WEXITSTATUS(status));
}else /* 如果WIFEXITED返回零 */
printf("the child process %d exit abnormally.\n",pr);
}
}
编译并运行:
$ cc wait2.c -o wait2
$ ./wait2
This is child process with pid of 1538.
the child process 1538 exit normally.
the return code is 3.
父进程准确捕捉到了子进程的返回值3,并把它打印了出来。

当然,处理进程退出状态的宏并不止这两个,但它们当中的绝大部分在平时的编程中很少用到,就也不在这里浪费篇幅介绍了,有兴趣的读者可以自己参阅Linux man pages去了解它们的用法。

有时候,父进程要求子进程的运算结果进行下一步的运算,或者子进程的功能是为父进程提供了下一步执行的先决条件(如:子进程建立文件,而父进程写入数据),此时父进程就必须在某一个位置停下来,等待子进程运行结束,而如果父进程不等待而直接执行下去的话,可以想见,会出现极大的混乱。这种情况称为进程之间的同步,更准确地说,这是进程同步的一种特例。进程同步就是要协调好2个以上的进程,使之以安排好地次序依次执行。解决进程同步问题有更通用的方法,我们将在以后介绍,但对于我们假设的这种情况,则完全可以用wait系统调用简单的予以解决。请看下面这段程序:

#include 
#include
main()
{
pid_t pc, pr;
int status;

pc=fork();
阅读(909) | 评论(0) | 转发(1) |
0

上一篇:ASCII表中的控制字符

下一篇:bash登录过程

给主人留下些什么吧!~~