全部博文(330)
分类:
2011-06-05 07:23:12
焦萌 2007年1月30日
从前面几篇对Bloom Filter的介绍可以看出,标准的Bloom Filter是一种很简单的数据结构,它只支持插入和查找两种操作。在所要表达的集合是静态集合的时候,标准Bloom Filter可以很好地工作,但是如果要表达的集合经常变动,标准Bloom Filter的弊端就显现出来了,因为它不支持删除操作。
Counting Bloom Filter的出现解决了这个问题,它将标准Bloom Filter位数组的每一位扩展为一个小的计数器(Counter),在插入元素时给对应的k(k为哈希函数个数)个Counter的值分别加1,删除元素时给对应的k个Counter的值分别减1。Counting Bloom Filter通过多占用几倍的存储空间的代价,给Bloom Filter增加了删除操作。下一个问题自然就是,到底要多占用几倍呢?
我们先计算第i个Counter被增加j次的概率,其中n为集合元素个数,k为哈希函数个数,m为Counter个数(对应着原来位数组的大小):
上面等式右端的表达式中,前一部分表示从nk次哈希中选择j次,中间部分表示j次哈希都选中了第i个Counter,后一部分表示其它nk – j次哈希都没有选中第i个Counter。因此,第i个Counter的值大于j的概率可以限定为:
上式第二步缩放中应用了估计阶乘的斯特林公式:
在Bloom Filter概念和原理一文中,我们提到过k的最优值为(ln2)m/n,现在我们限制k ≤ (ln2)m/n,就可以得到如下结论:
如果每个Counter分配4位,那么当Counter的值达到16时就会溢出。这个概率为:
这个值足够小,因此对于大多数应用程序来说,4位就足够了。
关于Counting Bloom Filter最早的论文: