Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1715105
  • 博文数量: 607
  • 博客积分: 10031
  • 博客等级: 上将
  • 技术积分: 6633
  • 用 户 组: 普通用户
  • 注册时间: 2006-03-30 17:41
文章分类

全部博文(607)

文章存档

2011年(2)

2010年(15)

2009年(58)

2008年(172)

2007年(211)

2006年(149)

我的朋友

分类: LINUX

2006-09-20 15:29:17

Search the Catalog

Linux Device Drivers, 2nd Edition


2nd Edition June 2001
0-59600-008-1, Order Number: 0081
586 pages, $39.95

Chapter 16
Physical Layout of the Kernel Source

Contents:










So far, we've talked about the Linux kernel from the perspective of writing device drivers. Once you begin playing with the kernel, however, you may find that you want to "understand it all." In fact, you may find yourself passing whole days navigating through the source code and grepping your way through the source tree to uncover the relationships among the different parts of the kernel.

This kind of "heavy grepping" is one of the tasks your authors perform quite often, and it is an efficient way to retrieve information from the source code. Nowadays you can even exploit Internet resources to understand the kernel source tree; some of them are listed in the Preface. But despite Internet resources, wise use of grep,[62] less, and possibly ctags or etagscan still be the best way to extract information from the kernel sources.

Every pathname is given relative to the source root (usually /usr/src/linux), while filenames with no directory component are assumed to reside in the "current" directory -- the one being discussed. Header files (when named with < and > angle brackets) are given relative to the includedirectory of the source tree. We won't dissect the Documentation directory, as its role is self-explanatory.

The usual way to look at a program is to start where execution begins. As far as Linux is concerned, it's hard to tell where execution begins -- it depends on how you define "begins."

By the time start_kernel is invoked, the processor has been initialized, protected mode[63] has been entered, the processor is executing at the highest privilege level (sometimes called supervisor mode), and interrupts are disabled. The start_kernel function is in charge of initializing all the kernel data structures. It does this by calling external functions to perform subtasks, since each setup function is defined in the appropriate kernel subsystem.

Finally, start_kernel forks the init kernel thread (which gets 1 as a process ID) and executes the idle function (again, defined in architecture-specific code).

It is the task of the init thread to perform all other initialization. The thread is part of the same init/main.c file, and the bulk of the initialization (init) calls are performed by do_basic_setup. The function initializes all bus subsystems that it finds (PCI, SBus, and so on). It then invokes do_initcalls; device driver initialization is performed as part of the initcall processing.

The idea of init calls was added in version 2.3.13 and is not available in older kernels; it is designed to avoid hairy #ifdef conditionals all over the initialization code. Every optional kernel feature (device driver or whatever) must be initialized only if configured in the system, so the call to initialization functions used to be surrounded by #ifdef CONFIG_FEATURE and #endif. With init calls, each optional feature declares its own initialization function; the compilation process then places a reference to the function in a special ELF section. At boot time, do_initcalls scans the ELF section to invoke all the relevant initialization functions.

Despite the huge addition of new features over time, the amount of conditional compilation dropped significantly in 2.4 with the adoption of init calls. Another advantage of this technique is that device driver maintainers don't need to patch main.cevery time they add support for a new command-line argument. The addition of new features to the kernel has been greatly facilitated by this technique and there are no more hairy cross references all over the boot code. But as a side effect, 2.4 can't be compiled into older file formats that are less flexible than ELF. For this reason, uClinux[64] developers switched from COFF to ELF while porting their system from 2.0 to 2.4.

Another side effect of extensive use of ELF sections is that the final pass in compiling the kernel is not a conventional link pass as it used to be. Every platform now defines exactly how to link the kernel image (the vmlinux file) by means of an ldscript file; the file is called vmlinux.lds in the source tree of each platform. Use of ld scripts is described in the standard documentation for the binutilspackage.

There is yet another advantage to putting the initialization code into a special section. Once initialization is complete, that code is no longer needed. Since this code has been isolated, the kernel is able to dump it and reclaim the memory it occupies.

On most common platforms, the code that runs before start_kernel is mainly devoted to moving the kernel around after the computer's firmware (possibly with the help of a boot loader) has loaded it into RAM from some other storage, such as a local disk or a remote workstation over the network.

A known limitation of the x86 platform is that the CPU can see only 640 KB of system memory when it is powered on, no matter how large your installed memory is. Dealing with the limitation requires the kernel to be compressed, and support for decompression is available in arch/i386/boot together with other code such as VGA mode setting. On the PC, because of this limit, you can't do anything with a vmlinux kernel image, and the file you actually boot is called zImage or bzImage; the boot sector described earlier is actually prepended to this file rather than to vmlinux. We won't spend more time on the booting process on the x86 platform, since you can choose from several boot loaders, and the topic is generally well discussed elsewhere.

Some platforms differ greatly in the layout of their boot code from the PC. Sometimes the code must deal with several variations of the same architecture. This is the case, for example, with ARM, MIPS, and M68k. These platforms cover a wide variety of CPU and system types, ranging from powerful servers and workstations down to PDAs or embedded appliances. Different environments require different boot code and sometimes even different ldscripts to compile the kernel image. Some of this support is not included in the official kernel tree published by Linus and is available only from third-party Concurrent Versions System (CVS) trees that closely track the official tree but have not yet been merged. Current examples include the SGI CVS tree for MIPS workstations and the LinuxCE CVS tree for MIPS-based palm computers. Nonetheless, we'd like to spend a few words on this topic because we feel it's an interesting one. Everything from start_kernelonward is based on this extra complexity but doesn't notice it.

Specific ld scripts and makefile rules are needed especially for embedded systems, and particularly for variants without a memory management unit, which are supported by uClinux. When you have no hardware MMU that maps virtual addresses to physical ones, you must link the kernel to be executed from the physical address where it will be loaded in the target platform. It's not uncommon in small systems to link the kernel so that it is loaded into read-only memory (usually flash memory), where it is directly activated at power-on time without the help of any boot loader.

When the kernel is executed directly from flash memory, the makefiles, ld scripts, and boot code work in tight cooperation. The ld rules place the code and read-only segments (such as the init calls information) into flash memory, while placing the data segments (data and block started by symbol (BSS)) in system RAM. The result is that the two sets are not consecutive. The makefile, then, offers special rules to coalesce all these sections into consecutive addresses and convert them to a format suitable for upload to the target system. Coalescing is mandatory because the data segment contains initialized data structures that must get written to read-only memory or otherwise be lost. Finally, assembly code that runs before start_kernel must copy over the data segment from flash memory to RAM (to the address where the linker placed it) and zero out the address range associated with the BSS segment. Only after this remapping has taken place can C-language code run.

When you upload a new kernel to the target system, the firmware there retrieves the data file from the network or from a serial channel and writes it to flash memory. The intermediate format used to upload the kernel to a target computer varies from system to system, because it depends on how the actual upload takes place. But in each case, this format is a generic container of binary data used to transfer the compiled image using standardized tools. For example, the BIN format is meant to be transferred over a network, while the S3 format is a hexadecimal ASCII file sent to the target system through a serial cable.[65] Most of the time, when powering on the system, the user can select whether to boot Linux or to type firmware commands.

When start_kernel forks out the init thread (implemented by the init function in init/main.c), it is still running in kernel mode, and so is the init thread. When all initializations described earlier are complete, the thread drops the kernel lock and prepares to execute the user-space init process. The file being executed resides in /sbin/init, /etc/init, or /bin/init. If none of those are found, /bin/sh is run as a recovery measure in case the real init got lost or corrupted. As an alternative, the user can specify on the kernel command line which file the initthread should execute.

The procedure to enter user space is simple. The code opens /dev/console as standard input by calling the open system call and connects the console to stdout and stderr by calling dup; it finally calls execveto execute the user-space program.

The final call to execve finalizes the transition to user space. There is no magic involved in this transition. As with any execve call in Unix, this one replaces the memory maps of the current process with new memory maps defined by the binary file being executed (you should remember how executing a file means mapping it to the virtual address space of the current process). It doesn't matter that, in this case, the calling process is running in kernel space. That's transparent to the implementation of execve, which just finds that there are no previous memory maps to release before activating the new ones.

Whatever the system setup or command line, the init process is now executing in user space and any further kernel operation takes place in response to system calls coming from init itself or from the processes it forks out.

More information about how the init process brings up the whole system can be found in We'll now proceed on our tour by looking at the system calls implemented in each source directory, and then at how device drivers are laid out and organized in the source tree.

File handling is at the core of any Unix system, and the fs directory in Linux is the fattest of all directories. It includes all the filesystems supported by the current Linux version, each in its own subdirectory, as well as the most important system calls after fork and exit.

The execve system call lives in exec.c and relies on the various available binary formats to actually interpret the binary data found in the executable files. The most important binary format nowadays is ELF, implemented by binfmt_elf.c. binfmt_script.csupports the execution of interpreted files. After detecting the need for an interpreter (usually on the #! or "shebang" line), the file relies on the other binary formats to load the interpreter.

Miscellaneous binary formats (such as the Java executable format) can be defined by the user with a /proc interface defined in binfmt_misc.c. The misc binary format is able to identify an interpreted binary format based on the contents of the executable file, and fire the appropriate interpreter with appropriate arguments. The tool is configured via /proc/sys/fs/binfmt_misc.

Of particular interest to device driver writers is devices.c, which implements the char and block driver registries and acts as dispatcher for all devices. It does so by implementing the generic open method that is used before the device-specific file_operations structure is fetched and used. read and write for block devices are implemented in block_dev.c, which in turn delegates to buffer.c everything related to buffer management.

The last major directory of kernel source files is devoted to memory management. The files in this directory implement all the data structures that are used throughout the system to manage memory-related issues. While memory management is founded on registers and features specific to a given CPU, we've already seen in Chapter 13, "mmap and DMA" how most of the code has been made platform independent. Interested users can check how asm/arch-arch/mmimplements the lowest level for a specific computer platform.

In addition to allocation services, a memory management system must offer memory mappings. After all, mmap is the foundation of many system activities, including the execution of a file. The actual sys_mmap function doesn't live here, though. It is buried in architecture-specific code, because system calls with more than five arguments need special handling in relation to CPU registers. The function that implements mmap for all platforms is do_mmap_pgoff, defined in mmap.c. The same file implements sys_sendfile and sys_brk. The latter may look unrelated, because brk is used to raise the maximum virtual address usable by a process. Actually, Linux (and most current Unices) creates new virtual address space for a process by mapping pages from /dev/zero.

Interestingly, the uClinux port of the Linux kernel to MMU-less processors introduces a separate mmnommu directory. It closely replicates the official mm while leaving out any MMU-related code. The developers chose this path to avoid adding a mess of conditional code in the mm source tree. Since uClinux is not (yet) integrated with the mainstream kernel, you'll need to download a uClinux CVS tree or tar ball if you want to compare the two directories (both included in the uClinux tree).

The network implementation in Linux is based on the same file operations that act on device files. This is natural, because network connections (sockets) are described by normal file descriptors. The file socket.c is the locus of the socket file operations. It dispatches the system calls to one of the network protocols via a struct proto_ops structure. This structure is defined by each network protocol to map system calls to its specific, low-level data handling operations.

Files in core implement generic network features such as device handling, firewalls, multicasting, and aliases; this includes the handling of socket buffers (core/skbuff.c) and socket operations that remain independent of the underlying protocol (core/sock.c). The device-independent data management that sits near device-specific code is defined in core/dev.c.

sunrpc and khttpd are peculiar because they include kernel-level implementations of tasks that are usually carried out in user space.

Architecture-specific code, on the other hand, has never been introduced in detail, but it doesn't easily lend itself to discussion. Inside each architecture's directory you usually find a file hierarchy similar to the top-level one (i.e., there are mmand kernel subdirectories), but also boot-related code and assembly source files. The most important assembly file within each supported architecture is called kernel/entry.S; it's the back end of the system call mechanism (i.e., the place where user processes enter kernel mode). Besides that, however, there's little in common across the various architectures, and describing them all would make no sense.

Current Linux kernels support a huge number of devices. Device drivers account for half of the size of the source tree (actually two-thirds if you exclude architecture-specific code that you are not using). They account for almost 1500 C-language files and more than 800 headers.

The drivers directory itself doesn't host any source file, only subdirectories (and, obviously, a makefile).

Structuring the huge amount of source code is not easy, and the developers haven't followed any strict rules. The original division between drivers/char and drivers/block is inefficient nowadays, and more directories have been created according to several different requirements. Still, the most generic char and block drivers are found in drivers/char and drivers/block, so we'll start by visiting those two.

drivers/char

The generic tty layer (as well as line disciplines, tty software drivers, and similar features) is implemented in this directory. console.c defines the linux terminal type (by implementing its specific escape sequences and keyboard encoding). vt.c defines the virtual consoles, including code for switching from one virtual console to another. Selection support (the cut-and-paste capability of the Linux text console) is implemented by selection.c; the default line discipline is implemented by n_tty.c.

There are other files that, despite what you might expect, are device independent. lp.c implements a generic parallel port printer driver that includes a console-on-line-printer capability. It remains device independent by using the parport device driver to map operations to actual hardware (as seen in Figure 2-2). Similarly, keyboard.c implements the higher levels of keyboard handling; it exports the handle_scancodefunction so that platform-specific keyboard drivers (like pc_keyb.c, in the same directory) can benefit from generalized management. mem.c implements /dev/mem, /dev/null, and /dev/zero, basic resources you can't do without.

Actually, since mem.c is never left out of the compilation process, it has been elected as the home of chr_dev_init, which in turn initializes several other device drivers if they have been selected for compilation.

There are other device-independent and platform-independent source files in drivers/char. If you are interested in looking at the role of each source file, the best place to start is the makefile for this directory, an interesting and pretty much self-explanatory file.

Like the preceding drivers/char directory, drivers/block has been present in Linux development for a long time. It used to host all block device drivers, and for this reason it included some device-independent code that is still present.

A relatively new entry in this directory is blkpg.c (added as of 2.3.3). The file implements generic code for partition and geometry handling in block devices. Its code, together with the fs/partitions directory described earlier, replaces what was earlier part of "generic hard disk" support. The file called genhd.c still exists, but now includes only the generic initialization function for block drivers (similar to the one for char drivers that is part of mem.c). One of the public functions exported by blkpg.c is blk_ioctl, covered by "The ioctl Method" in Chapter 12, "Loading Block Drivers".

The last device-independent file found in drivers/block is elevator.o. This file implements the mechanism to change the elevator function associated with a block device driver. The functionality can be exploited by means of ioctl commands briefly introduced in "The ioctl Method".

In addition to the hardware-dependent device drivers you would expect to find in drivers/block, the directory also includes software device drivers that are inherently cross-platform, just like the sbull and spull drivers that we introduced in this book. They are the RAM disk rd.c, the "network block device" nbd.c, and the loopback block device loop.c. The loopback device is used to mount files as if they were block devices. (See the manpage for mount, where it describes the -o loop option.) The network block device can be used to access remote resources as block devices (thus allowing, for example, a remote swap device).

The IDE family of device drivers used to live in drivers/block but has expanded to the point where they were moved into a separate directory. As a matter of fact, the IDE interface has been enhanced and extended over time in order to support more than just conventional hard disks. For example, IDE tapes are now supported as well.

The drivers/ide directory is a whole world of its own, with some generalized code and its own programming interface. You'll note in the directory some files that are just a few kilobytes long; they include only the IDE controller detection code, and rely on the generalized IDE driver for everything else. They are interesting reading if you are curious about IDE drivers.

This directory hosts the generic CD-ROM interface. Both the IDE and SCSI cdrom drivers rely on drivers/cdrom/cdrom.c for some of their functionality. The main entry points to the file are register_cdrom and unregister_cdrom; the caller passes them a pointer to struct cdrom_device_info as the main object involved in CD-ROM management.

Other files in this directory are concerned with specific hardware drives that are neither IDE nor SCSI. Those devices are pretty rare nowadays, as they have been made obsolete by modern IDE controllers.

Everything related to the SCSI bus has always been placed in this directory. This includes both controller-independent support for specific devices (such as hard drives and tapes) and drivers for specific SCSI controller boards.

Code that supports a specific type of hardware drive plugs into the SCSI core system by calling scsi_register_modulewith an argument of MODULE_SCSI_DEV. This is how disk support is added to the core system by sd.c, CD-ROM support by sr.c (which, internally, refers to the cdrom_ class of functions), tape support by st.c, and generic devices by sg.c.

The "generic" driver is used to provide user-space programs with direct access to SCSI devices. The underlying device can be virtually anything; currently both CD burners and scanner programs rely on the SCSI generic device to access the hardware they drive. By opening the /dev/sg devices, a user-space driver can do anything it needs without specific support in the kernel.

Host adapters (i.e., SCSI controller hardware) can be plugged into the core system by calling scsi_register_module with an argument of MODULE_SCSI_HA. Most drivers currently do that by using the scsi_module.cfacility to register themselves: the driver's source file defines its (static) data structures and then includes scsi_module.c. This file defines standard initialization and cleanup functions, based on and the init calls mechanisms. This technique allows drivers to serve as either modules or compiled-in functions without any #ifdef lines.

Interestingly, one of the host adapters supported in drivers/scsi is the IDE SCSI emulation code, a software host adapter that maps to IDE devices. It is used, as an example, for CD mastering: the system sees all of the drives as SCSI devices, and the user-space program need only be SCSI aware.

The line discipline is the software layer responsible for the data that traverses the communication line. Every tty device has a line discipline attached. Each line discipline is identified by a number, and the number, as usual, is specified using a symbolic name. The default Linux line discipline is N_TTY, that is, the normal tty management routines, defined in drivers/char/n_tty.c.

When PPP, SLIP, or other communication protocols are concerned, however, the default line discipline must be replaced. User-space programs switch the discipline to N_PPP or N_SLIP, and the default will be restored when the device is finally closed. The reason that pppd and slattach don't exit, after setting up the communication link is just this: as soon as they exit, the device is closed and the default line discipline gets restored.

The job of initializing network drivers hasn't yet been transferred to the init calls mechanism, because some subtle technical details prevent the switch. Initialization is therefore still performed the old way: the Space.c file performs the initialization by scanning a list of known hardware and probing for it. The list is controlled by #ifdef directives that select which devices are actually included at compile time.

Like drivers/scsi and drivers/net, this directory includes all the drivers for sound cards. The contents of the directory are somewhat similar to the SCSI directory: a few files make up the core sound system, and individual device drivers stack on top of it. The core sound system is in charge of requesting the major number SOUND_MAJOR and dispatching any use of it to the underlying device drivers. A hardware driver plugs into the core by calling sound_install_audiodrv, declared in dev_table.c.

The list of device-independent files in this directory is pretty long, since it includes generic support for mixers, generic support for sequencers, and so on. To those who want to probe further, we suggest using the makefile as a reference to what is what.

Here you find all the frame buffer video devices. The directory is concerned with video output, not video input. Like /drivers/sound, the whole directory implements a single char device driver; a core frame buffer system dispatches actual access to the various frame buffers available on the computer.

The entry point to /dev/fb devices is in fbmem.c. The file registers the major number and maintains an internal list of which frame buffer device is in charge of each minor number. A hardware driver registers itself by calling register_framebuffer, passing a pointer to struct fb_info. The data structure includes everything that's needed for specific device management. It includes the open and releasemethods, but no read, write, or mmap; these methods are implemented in a generalized way in fbmem.c itself.

In addition to frame buffer memory, this directory is in charge of frame buffer consoles. Because the layout of pixels in frame buffer memory is standardized to some extent, kernel developers have been able to implement generic console support for the various layouts of display memory. Once a hardware driver registers its own struct fb_info, it automatically gets a text console attached to it, according to its declared layout of video memory.

Unfortunately, there is no real standardization in this area, so the kernel currently supports 17 different screen layouts; they range from the fairly standard 16-bit and 32-bit color displays to the hairy VGA and Mac pixel placements. The files concerned with placing text on frame buffers are called fbcon-name.c.

When the first frame buffer device is registered, the function register_framebuffer calls take_over_console (exported by drivers/char/console.c) in order to actually set up the current frame buffer as the system console. At boot time, before frame buffer initialization, the console is either the native text screen or, if none is there, the first serial port. The command line starting the kernel, of course, can override the default by selecting a specific console device. Kernel developers created take_over_console to add support for frame buffer consoles without complicating the boot code. (Usually frame buffer drivers depend on PCI or equivalent support, so they can't be active too early during the boot process.) The take_over_console feature, however, is not limited to frame buffers; it's available to any code involving any hardware. If you want to transmit kernel messages using a Morse beeper or UDP network packets, you can do that by calling take_over_console from your kernel module.

Input management is another facility meant to simplify and standardize activities that are common to several drivers, and to offer a unified interface to user space. The core file here is called input.c. It registers itself as a char driver using INPUT_MAJOR as its major number. Its role is collecting events from low-level device drivers and dispatching them to higher layers.

The input interface is defined in . Each low-level driver registers itself by calling input_register_device. After registration, users are able to feed new events to the system by calling input_event.

Higher-level modules can register with input.c by calling input_register_handler and specifying what kind of events they are interested in. This is, for example, how keybdev.c expresses its interest in keyboard events (which it ultimately feeds to driver/char/keyboard.c).

A high-level module can also register its own minor numbers so it can use its own file operations and become the owner of an input-related special file in /dev. Currently, however, third-party modules can't easily register minor numbers, and the feature can be used reliably only by the files in drivers/input. Minor numbers can currently be used to support mice, joysticks, and generic even channels in user space.

This directory, introduced as of version 2.4.0-test7, collects other communication media, currently radio and video input devices. Both the media/radio and media/videodrivers currently stack on video/videodev.c, which implements the "Video For Linux" API.

video/videodev.c is a generic container. It requests a major number and makes it available to hardware drivers. Individual low-level drivers register by calling video_register_device. They pass a pointer to their own struct video_device and an integer that specifies the type of device. Supported devices are frame grabbers (VFL_TYPE_GRABBER), radios (VFL_TYPE_RADIO), teletext devices (VFL_TYPE_VTX), and undecoded vertical-blank information (VFL_TYPE_VBI).

Some of the subdirectories of drivers are specific to devices that plug into a particular bus architecture. They have been separated from the generic char and block directories because quite a good deal of code is generic to the bus architecture (as opposed to specific to the hardware device).

The former class includes drivers/sbus, drivers/nubus, drivers/zorro(the bus used in Amiga computers), drivers/dio(the bus of the HP300 class of computers), and drivers/tc (Turbo Channel, used in MIPS DECstations). Whereas sbus includes both SBus support functions and drivers for some SBus devices, the others include only support functions. Hardware drivers based on all of these buses live in drivers/net, drivers/scsi, or wherever is appropriate for the actual hardware (with the exception of a few SBus drivers, as noted). A few of these buses are currently used by just one driver.

Directories devoted to external buses include drivers/usb, drivers/pcmcia, drivers/parport (generic cross-platform parallel port support, which defines a whole new class of device drivers), drivers/isdn (all ISDN controllers supported by Linux and their common support functions), drivers/atm (the same, for ATM network connections), and drivers/ieee1394 (FireWire).

Sometimes, a computer platform has its own directory tree in the drivers hierarchy. This has tended to happen when kernel development for that platform has proceeded alongside the main source tree without being merged for a while. In these cases, keeping the directory tree separate helped in maintaining the code. Examples include drivers/acorn (old ARM-based computers), drivers/macintosh, drivers/sgi (Silicon Graphics workstations), and drivers/s390 (IBM mainframes). There is little of value, usually, in looking at that code, unless you are interested in the specific platform.

There are other subdirectories in drivers, but they are, in our opinion, currently of minor interest and very specific use. drivers/mtd implements a Memory Technology Device layer, which is used to manage solid-state disks (flash memories and other kinds of EEPROM). drivers/i2c offers an implementation of the i2c protocol, which is the "Inter Integrated Circuit" two-wire bus used internally by several modern peripherals, especially frame grabbers. drivers/i2o, similarly, handles I2O devices (a proprietary high-speed communication standard for certain PCI devices, which has been unveiled under pressure from the free software community). drivers/pnp is a collection of common ISA Plug-and-Play code from various drivers, but fortunately the PnP hack is not really used nowadays by manufacturers.

Under drivers/ you also find initial support for new device classes that are currently implemented by a very small range of devices.

That's the case for fiber channel support (drivers/fc4) and drivers/telephony. There's even an empty directory drivers/misc, which claims to be "for misc devices that really don't fit anywhere else." The directory is empty of code, but hosts an (empty) makefile with the comment just quoted.

Although we consider it unlikely, it may even happen that 2.6 or 3.0 will turn out to be pretty different from 2.4; unfortunately, this edition of the book won't automatically update itself to cover the new releases and will become obsolete over time. Despite our best efforts to cover the current version of the kernel, both in this chapter and in the whole book, there's no substitute for direct reference to the source code.



Back to:


| | | | | |

© 2001, O'Reilly & Associates, Inc.

阅读(793) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~