分类: C/C++
2006-09-17 00:20:30
|
知识:
1.数据结构中对象的定义,存储的表示及操作的实现.
2.线性:线性表、栈、队列、数组、字符串(广义表不考)
树:二叉树
集合:查找,排序
图(不考)
能力:
分析,解决问题的能力
过程:
● 确定问题的数据。
● 确定数据间的关系。
● 确定存储结构(顺序-数组、链表-指针)
● 确定算法
● 编程
● 算法评价(时间和空间复杂度,主要考时间复杂度)
一、数组
1、存放于一个连续的空间
2、一维~多维数组的地址计算方式
已知data[0][0]的内存地址,且已知一个元素所占内存空间S求data[i][j]在内存中的地址。
公式:(add+(i*12+j)*S)(假设此数组为data[10][12])
注意:起始地址不是data[0][0]时候的情况。起始地址为data[-3][8]和情况;
3、顺序表的定义
存储表示及相关操作
4、顺序表操作中时间复杂度估计
5、字符串的定义(字符串就是线性表),存储表示
模式匹配算法(简单和KMP(不考))
6、特殊矩阵:存储方法(压缩存储(按行,按列))
三对角:存储于一维数组
三对角问题:已知Aij能求出在一维数组中的下标k;已知下标k求Aij。
7、稀疏矩阵:定义,存储方式:三元组表、十字链表(属于图部分,不考)
算法
● 数组中元素的原地逆置; 对换
● 在顺序表中搜索值为X的元素;
● 在有序表中搜索值为X的元素;(折半查找)
● 在顺序表中的第i个位置插入元素X;
● 在顺序表中的第i个位置删除元素X;
● 两个有序表的合并;算法?
线性表数据结构定义:
Typedef struct {
int data[max_size];
int len;
}linear_list;
● 模式匹配
● 字符串相加
● 求子串
● (i,j)<=>K 注意:不同矩阵所用的公式不同;
● 稀疏矩阵的转置(两种方式,后种为妙)
● 和数组有关的算法
例程:求两个长整数之和。
a=13056952168
b=87081299
数组:
a[]:1 3 0 5 6 9 5 2 1 6 8
b[]:8 7 0 8 1 2 9 9
由于以上的结构不够直观(一般越是直观越容易解决) 将其改为:
a[]:11 8 6 1 2 5 9 6 5 0 3 1 a[0]=11(位数)
b[]: 8 9 9 2 1 8 0 7 8 0 0 0 b[0]=8
c进位 0 1 1 0 0 1 1 1 1 0 0
c[]:11 7 6 4 3 3 0 4 4 2 3 1 c[0]的值(C位数)由c[max_s+1]决定!
注意:在求C前应该将C(max_s+1)位赋0.否则为随机数; 较小的整数高位赋0.
算法:已知a,b两个长整数,结果:c=a+b;
总共相加次数: max_s=max(a[],b[])
程序:
for(i=1;i<=max_s;i++) {
k=a[i]+b[i]+c[i];
c[i]=k%10;
c[i+1]=k/10;
}
求c位数:
if(c[max_s+1]==0)
c[0]=max_s;
else
c[0]=max_s+1;
以下代码是我编的(毕竟是初学者.不太简洁大家不要见怪!):
/*两长整数相加*/
#include
#include
#define PRIN printf("\n");
int flag=0; /*a[0]>b[0]?1:0*/
/* max(a[],b[]) {}*/
change(char da[],char db[],int a[],int b[],int c[]) {
int i;
if(a[0]>b[0]) {
for(i=1;i<=a[0];a[i]=da[a[0]-i]-'0',i++); /*a[0]-'0' so good!*/
for(i=1;i<=b[0];b[i]=db[b[0]-i]-'0',i++);
for(i=b[0]+1;i<=a[0];b[i]=0,i++);
for(i=1;i<=a[0]+1;c[i]=0,i++);
flag=1;
}
else {
for(i=1;i<=b[0];b[i]=db[b[0]-i]-'0',i++);
for(i=1;i<=a[0];a[i]=da[a[0]-i]-'0',i++);
for(i=a[0]+1;i<=b[0];a[i]=0,i++);
for(i=1;i<=b[0]+1;c[i]=0,i++);
}
}
add(int a[],int b[],int c[]) {
int i,sum;
if(flag==1) {
for(i=1;i<=a[0];i++) {
sum=a[i]+b[i]+c[i];
c[i+1]=sum/10;
c[i]=sum%10;
}
if(c[a[0]+1]==0)
c[0]=a[0];
else
c[0]=a[0]+1;
}
else {
for(i=1;i<=b[0];i++) {
sum=a[i]+b[i]+c[i];
c[i+1]=sum/10;
c[i]=sum%10;
}
if(c[b[0]+1]==0)
c[0]=b[0];
else
c[0]=b[0]+1;
}
}
void print(int m[]) {
int i;
for(i=m[0];i>=1;i--)
printf("%d,",m[i]); PRIN
}
main(){
int s;
int a[20],b[20],c[20];
char da[]={"123456789"};
char db[]={"12344443"};
a[0]=strlen(da);
b[0]=strlen(db);
printf("a[0]=%d\t",a[0]);
printf("b[0]=%d",b[0]); PRIN
change(da,db,a,b,c);
printf("flag=%d\n",flag); PRIN
printf("-----------------\n");
if(flag==1) {
print(a); PRIN
s=abs(a[0]-b[0]);
printf("+");
for(s=s*2-1;s>0;s--)
printf(" ");
print(b); PRIN
}
else {
s=abs(a[0]-b[0]);
printf("+");
for(s=s*2-1;s>0;s--)
printf(" ");
print(a); PRIN
print(b); PRIN
}
add(a,b,c);
printf("-----------------\n");
print(c);
}
时间复杂度计算:
● 确定基本操作
● 计算基本操作次数
● 选择T(n)
● lim(F(n)/T(n))=c
● 0(T(n))为时间复杂度
上例子的时间复杂度为O(max_s);
例程:已知两个字符串S,T,求S和T的最长公子串;
1、逻辑结构:字符串
2、存储结构:数组
3、算法: 精化(精细化工)**老顽童注:此处“精细化工”说明好像不对!
s="abaabcacb"
t="abdcabcaabcda"
当循环到s.len-1时,有两种情况:s="abaabcacb"、s="abaabcacb"
s.len-2时,有三种情况:s="abaabcacb"、s="abaabcacb"、s="abaabcacb"
.
.
.
1 s.len种情况
程序思路:
tag=0 //没有找到
for(l=s.len;l>0&&!tag;l--) {
判断长度为l的s中的子串是否为t的子串;
若是:tag=1;
}
长度为l的s的子串在s中有(s.len-l+1)个。
子串0: 0~l-1
1: 1~l
2: 2~l+1
3: 3~l+2
……
……
s.len-l: s.len-l~s.len-1
由上面可得:第j个子串为j~l+j-1。
判断长度为l的s中的子串是否为t的子串:
for(j=0;j
如果是:tag=1;
}
模式结构:
tag=0;
for(l=s.len;l>0&&tag==0;l--) {
for(j=0;j
若是,tag=1;
}
}