分类: C/C++
2006-09-17 00:02:58
在 给出线性算法之前,先来看一个对穷举算法进行优化的算法,它的算法复杂度为O(n^2)。其实这个算法只是对对穷举算法稍微做了一些修改:其实子序列的和 我们并不需要每次都重新计算一遍。假设Sum(i, j)是A[i] ... A[j]的和,那么Sum(i, j+1) = Sum(i, j) + A[j+1]。利用这一个递推,我们就可以得到下面这个算法:
int max_sub(int a[],int size)
{
int i,j,v,max=a[0];
for(i=0;i{
v=0;
for(j=i;j{
v=v+a[j];//Sum(i, j+1) = Sum(i, j) + A[j+1]
if(v>max)
max=v;
}
}
return max;
}
那怎样才能达到线性复杂度呢?这里运用动态规划的思想。先看一下源代码实现:
int max_sub2(int a[], int size)
{
int i,max=0,temp_sum=0;
for(i=0;i{
temp_sum+=a[i];
if(temp_sum>max)
max=temp_sum;
else if(temp_sum<0)
temp_sum=0;
}
return max;
}
在这一遍扫描数组当中,从左到右记录当前子序列的和temp_sum,若这个和不断增加,那么最大子序列的和max也不断增加(不断更新max)。 如果往前扫描中遇到负数,那么当前子序列的和将会减小。此时temp_sum 将会小于max,当然max也就不更新。如果temp_sum降到0时,说明前面已经扫描的那一段就可以抛弃了,这时将temp_sum置为0。然后, temp_sum将从后面开始将这个子段进行分析,若有比当前max大的子段,继续更新max。这样一趟扫描结果也就出来了。