Chinaunix首页 | 论坛 | 博客
  • 博客访问: 149667
  • 博文数量: 21
  • 博客积分: 1400
  • 博客等级: 上尉
  • 技术积分: 355
  • 用 户 组: 普通用户
  • 注册时间: 2007-12-12 17:44
文章分类

全部博文(21)

文章存档

2011年(1)

2010年(5)

2009年(8)

2008年(7)

我的朋友

分类: LINUX

2010-05-10 09:36:24

时间在一个操作系统内核中占据着重要的地位,它是驱动一个OS内核运行的“起博器”。一般说来,内核主要需要两种类型的时间:
1.在内核运行期间持续记录当前的时间与日期,以便内核对某些对象和事件作时间标记(timestamp,也称为“时间戳”),或供用户通过时间syscall进行检索。
2.维持一个固定周期的定时器,以提醒内核或用户一段时间已经过去了。
PC机中的时间是有三种时钟硬件提供的,而这些时钟硬件又都基于固定频率的晶体振荡器来提供时钟方波信号输入。
这三种时钟硬件是:(1)实时时钟(Real Time Clock,RTC);(2)可编程间隔定时器(Programmable IntervalTimer,PIT);(3)时间戳计数器(Time Stamp Counter,TSC)。
1 实时时钟RTC
自从IBM PCAT起,所有的PC机就都包含了一个叫做实时时钟(RTC)的时钟芯片,以便在PC机断电后仍然能够继续保持时间。显然,RTC是通过主板上的电池来供电的,而不是通过PC机电源来供电的,因此当PC机关掉电源后,RTC仍然会继续工作。通常,CMOSRAM和RTC被集成到一块芯片上,因此RTC也称作“CMOSTimer”。最常见的RTC芯片是MC146818(Motorola)和DS12887(maxim),DS12887完全兼容于MC146818,并有一定的扩展。
2 可编程间隔定时器PIT
每个PC机中都有一个PIT,以通过IRQ0产生周期性的时钟中断信号。当前使用最普遍的是Intel 8254 PIT芯片,它的I/O端口地址是0x40~0x43。
Intel 8254 PIT有3个计时通道,每个通道都有其不同的用途:
(1)通道0用来负责更新系统时钟。每当一个时钟滴答过去时,它就会通过IRQ0向系统产生一次时钟中断。
(2)通道1通常用于控制DMAC对RAM的刷新。
(3)通道2被连接到PC机的扬声器,以产生方波信号。
每个通道都有一个向下减小的计数器,8254PIT的输入时钟信号的频率是1193181HZ,也即一秒钟输入1193181个clock-cycle。每输入一个clock-cycle其时间通道的计数器就向下减1,一直减到0值。因此对于通道0而言,当他的计数器减到0时,PIT就向系统产生一次时钟中断,表示一个时钟滴答已经过去了。当各通道的计数器减到0时,我们就说该通道处于“Terminal count”状态。
通道计数器的最大值是10000h,所对应的时钟中断频率是1193181/(65536)=18.2HZ,也就是说,此时一秒钟之内将产生18.2次时钟中断。
 锁存计数器(Latch Counter)
当控制寄存器中的bit[5:4]设置成0时,将把当前通道的计数器值锁存。此时通过I/O端口可以读到一个稳定的计数器值,因为计数器表面上已经停止向下计数(PIT芯片内部并没有停止向下计数)。NOTE!一旦发出了锁存命令,就要马上读计数器的值。
3 时间戳记数器TSC
从Pentium开始,所有的Intel 80x86 CPU就都又包含一个64位的时间戳记数器(TSC)的寄存器。该寄存器实际上是一个不断增加的计数器,它在CPU的每个时钟信号到来时加1(也即每一个clock-cycle输入CPU时,该计数器的值就加1)。
汇编指令rdtsc可以用于读取TSC的值。利用CPU的TSC,操作系统通常可以得到更为精准的时间度量。假如clock-cycle的频率是400MHZ,那么TSC就将每2.5纳秒增加一次。
4 Linux对时间的表示
通常,操作系统可以使用三种方法来表示系统的当前时间与日期:①最简单的一种方法就是直接用一个64位的计数器来对时钟滴答进行计数。②第二种方法就是用一个32位计数器来对秒进行计数,同时还用一个32位的辅助计数器对时钟滴答计数,之子累积到一秒为止。因为232超过136年,因此这种方法直至22世纪都可以让系统工作得很好。③第三种方法也是按时钟滴答进行计数,但是是相对于系统启动以来的滴答次数,而不是相对于相对于某个确定的外部时刻;当读外部后备时钟(如RTC)或用户输入实际时间时,根据当前的滴答次数计算系统当前时间。
UNIX类操作系统通常都采用第三种方法来维护系统的时间与日期。
首先,有必要明确一些Linux内核时钟驱动中的基本概念。
(1)时钟周期(clock cycle)的频率:8253/8254PIT的本质就是对由晶体振荡器产生的时钟周期进行计数,晶体振荡器在1秒时间内产生的时钟脉冲个数就是时钟周期的频率。Linux用宏CLOCK_TICK_RATE来表示8254PIT的输入时钟脉冲的频率(在PC机中这个值通常是1193180HZ),该宏定义在include/asm-i386/timex.h头文件中:
#define CLOCK_TICK_RATE1193180 /* Underlying HZ */
(2)时钟滴答(clock tick):我们知道,当PIT通道0的计数器减到0值时,它就在IRQ0上产生一次时钟中断,也即一次时钟滴答。PIT通道0的计数器的初始值决定了要过多少时钟周期才产生一次时钟中断,因此也就决定了一次时钟滴答的时间间隔长度。
(3)时钟滴答的频率(HZ):也即1秒时间内PIT所产生的时钟滴答次数。类似地,这个值也是由PIT通道0的计数器初值决定的(反过来说,确定了时钟滴答的频率值后也就可以确定8254PIT通道0的计数器初值)。Linux内核用宏HZ来表示时钟滴答的频率,而且在不同的平台上HZ有不同的定义值。对于ALPHA和IA62平台HZ的值是1024,对于SPARC、MIPS、ARM和i386等平台HZ的值都是100。该宏在i386平台上的定义如下(include/asm-i386/param.h):
#ifndef HZ
#define HZ 100
#endif
根据HZ的值,我们也可以知道一次时钟滴答的具体时间间隔应该是(1000ms/HZ)=10ms。
(4)时钟滴答的时间间隔:Linux用全局变量tick来表示时钟滴答的时间间隔长度,该变量定义在kernel/timer.c文件中,如下:
long tick = (1000000 + HZ/2) / HZ;/* timer interrupt period */
tick变量的单位是微妙(μs),由于在不同平台上宏HZ的值会有所不同,因此方程式tick=1000000÷HZ的结果可能会是个小数,因此将其进行四舍五入成一个整数,所以Linux将tick定义成(1000000+HZ/2)/HZ,其中被除数表达式中的HZ/2的作用就是用来将tick值向上圆整成一个整型数。
另外,Linux还用宏TICK_SIZE来作为tick变量的引用别名(alias),其定义如下(arch/i386/kernel/time.c):
#define TICK_SIZE tick
(5)宏LATCH:Linux用宏LATCH来定义要写到PIT通道0的计数器中的值,它表示PIT将没隔多少个时钟周期产生一次时钟中断。显然LATCH应该由下列公式计算:
LATCH=(1秒之内的时钟周期个数)÷(1秒之内的时钟中断次数)=(CLOCK_TICK_RATE)÷(HZ)
类似地,上述公式的结果可能会是个小数,应该对其进行四舍五入。所以,Linux将LATCH定义为(include/linux/timex.h):
/* LATCH is used in the interval timer and ftape setup. */
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)/* For divider */
类似地,被除数表达式中的HZ/2也是用来将LATCH向上圆整成一个整数。

 
阅读(1351) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~