Chinaunix首页 | 论坛 | 博客
  • 博客访问: 207445
  • 博文数量: 48
  • 博客积分: 856
  • 博客等级: 军士长
  • 技术积分: 520
  • 用 户 组: 普通用户
  • 注册时间: 2006-03-29 23:18
文章分类

全部博文(48)

文章存档

2011年(18)

2010年(30)

分类:

2010-11-22 13:25:54

原文地址:Linux 的 initrd (linuxrc,init) 作者:Godbach

Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Linux2.6 内核的 initrd 处理部分代码的分析,使读者可以对 initrd 技术有一个全面的认识。为了更好的阅读本文,要求读者对 Linux 的 VFS 以及 initrd 有一个初步的了解。

initrd 的英文含义是 boot loader initialized RAM disk,就是由 boot loader 初始化的内存盘。在 linux内核启动前, boot loader 会将存储介质中的 initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的 initrd 文件系统。在 boot loader 配置了 initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行 initrd 文件系统中的"某个文件",完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的 /sbin/init 进程。这里提到的"某个文件",Linux2.6 内核会同以前版本内核的不同,所以这里暂时使用了"某个文件"这个称呼,后面会详细讲到。第一阶段启动的目的是为第二阶段的启动扫清一切障爱,最主要的是 加载根文件系统存储介质的驱动模块。我们知道根文件系统可以存储在包括IDE、SCSI、USB在内的多种介质上,如果将这些设备的驱动都编译进内核,可 以想象内核会多么庞大、臃肿。

Initrd 的用途主要有以下四种:

1. linux 发行版的必备部件

linux 发行版必须适应各种不同的硬件架构,将所有的驱动编译进内核是不现实的,initrd 技术是解决该问题的关键技术。Linux 发行版在内核中只编译了基本的硬件驱动,在安装过程中通过检测系统硬件,生成包含安装系统硬件驱动的 initrd,无非是一种即可行又灵活的解决方案。

2. livecd 的必备部件

同 linux 发行版相比,livecd 可能会面对更加复杂的硬件环境,所以也必须使用 initrd。

3. 制作 Linux usb 启动盘必须使用 initrd

usb 设备是启动比较慢的设备,从驱动加载到设备真正可用大概需要几秒钟时间。如果将 usb 驱动编译进内核,内核通常不能成功访问 usb 设备中的文件系统。因为在内核访问 usb 设备时, usb 设备通常没有初始化完毕。所以常规的做法是,在 initrd 中加载 usb 驱动,然后休眠几秒中,等待 usb设备初始化完毕后再挂载 usb 设备中的文件系统。

4. 在 linuxrc 脚本中可以很方便地启用个性化 bootsplash。





为了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的 initrd进行一个简单的介绍。Linux2.4内核的initrd的格式是文件系统镜像文件,本文将其称为image-initrd,以区别后面介绍 的linux2.6内核的cpio格式的initrd。 linux2.4内核对initrd的处理流程如下:

1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。

2. 在内核初始化过程中,内核把 /dev/initrd 设备的内容解压缩并拷贝到 /dev/ram0 设备上。

3. 内核以可读写的方式把 /dev/ram0 设备挂载为原始的根文件系统。

4. 如果 /dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

5. 执行 initrd 上的 /linuxrc 文件,linuxrc 通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。

6. /linuxrc 执行完毕,真正的根文件系统被挂载。

7. 如果真正的根文件系统存在 /initrd 目录,那么 /dev/ram0 将从 / 移动到 /initrd。否则如果 /initrd 目录不存在, /dev/ram0 将被卸载。

8. 在真正的根文件系统上进行正常启动过程 ,执行 /sbin/init。 linux2.4 内核的 initrd 的执行是作为内核启动的一个中间阶段,也就是说 initrd 的 /linuxrc 执行以后,内核会继续执行初始化代码,我们后面会看到这是 linux2.4 内核同 2.6 内核的 initrd 处理流程的一个显著区别。








linux2.6 内核支持两种格式的 initrd,一种是前面第 3 部分介绍的 linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同 Linux2.4 内核的 initrd 一样,其核心文件就是 /linuxrc。另外一种格式的 initrd 是 cpio 格式的,这种格式的 initrd 从 linux2.5 起开始引入,使用 cpio 工具生成,其核心文件不再是 /linuxrc,而是 /init,本文将这种 initrd 称为 cpio-initrd。尽管 linux2.6 内核对 cpio-initrd和 image-initrd 这两种格式的 initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍 linux2.6 内核对这两种 initrd 的处理流程。

1. boot loader 把内核以及 initrd 文件加载到内存的特定位置。

2. 内核判断initrd的文件格式,如果是cpio格式。

3. 将initrd的内容释放到rootfs中。

4. 执行initrd中的/init文件,执行到这一点,内核的工作全部结束,完全交给/init文件处理。

image-initrd的处理流程

1. boot loader把内核以及initrd文件加载到内存的特定位置。

2. 内核判断initrd的文件格式,如果不是cpio格式,将其作为image-initrd处理。

3. 内核将initrd的内容保存在rootfs下的/initrd.image文件中。

4. 内核将/initrd.image的内容读入/dev/ram0设备中,也就是读入了一个内存盘中。

5. 接着内核以可读写的方式把/dev/ram0设备挂载为原始的根文件系统。

6. .如果/dev/ram0被指定为真正的根文件系统,那么内核跳至最后一步正常启动。

7. 执行initrd上的/linuxrc文件,linuxrc通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。

8. /linuxrc执行完毕,常规根文件系统被挂载

9. 如果常规根文件系统存在/initrd目录,那么/dev/ram0将从/移动到/initrd。否则如果/initrd目录不存在, /dev/ram0将被卸载。

10. 在常规根文件系统上进行正常启动过程 ,执行/sbin/init。

通过上面的流程介绍可知,Linux2.6内核对image-initrd的处理流程同linux2.4内核相比并没有显著的变化, cpio-initrd的处理流程相比于image-initrd的处理流程却有很大的区别,流程非常简单,在后面的源代码分析中,读者更能体会到处理的 简捷。

4.cpio-initrd同image-initrd的区别与优势

没有找到正式的关于cpio-initrd同image-initrd对比的文献,根据笔者的使用体验以及内核代码的分析,总结出如下三方面的区别,这些区别也正是cpio-initrd的优势所在:

cpio-initrd的制作非常简单,通过两个命令就可以完成整个制作过程


#假设当前目录位于准备好的initrd文件系统的根目录下
bash# find . | cpio -c -o > ../initrd.img
bash# gzip ../initrd.img

而传统initrd的制作过程比较繁琐,需要如下六个步骤


#假设当前目录位于准备好的initrd文件系统的根目录下
bash# dd if=/dev/zero of=../initrd.img bs=512k count=5
bash# mkfs.ext2 -F -m0 ../initrd.img
bash# mount -t ext2 -o loop ../initrd.img   /mnt
bash# cp -r   * /mnt
bash# umount /mnt
bash# gzip -9 ../initrd.img

本文不对上面命令的含义作细节的解释,因为本文主要介绍的是linux内核对initrd的处理,对上面命令不理解的读者可以参考相关文档。

通过上面initrd处理流程的介绍,cpio-initrd的处理流程显得格外简单,通过对比可知cpio-initrd的处理流程在如下两个方面得到了简化:

1. cpio-initrd并没有使用额外的ramdisk,而是将其内容输入到rootfs中,其实rootfs本身也是一个基于内存的文件系统。这样就省掉了ramdisk的挂载、卸载等步骤。

2. cpio-initrd启动完/init进程,内核的任务就结束了,剩下的工作完全交给/init处理;而对于image-initrd,内核在执行完 /linuxrc进程后,还要进行一些收尾工作,并且要负责执行真正的根文件系统的/sbin/init。通过图1可以更加清晰的看出处理流程的区别:


图1内核对cpio-initrd和image-initrd处理流程示意图
图1内核对cpio-initrd和image-initrd处理流程示意图

如图1所示,cpio-initrd不再象image-initrd那样作为linux内核启动的一个中间步骤,而是作为内核启动的终点,内核将控 制权交给cpio-initrd的/init文件后,内核的任务就结束了,所以在/init文件中,我们可以做更多的工作,而不比担心同内核后续处理的衔 接问题。当然目前linux发行版的cpio-initrd的/init文件的内容还没有本质的改变,但是相信initrd职责的增加一定是一个趋势。

阅读(3532) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~