这次实践ldd2上面的例子程序scullc,本意是想学习一下ioctol的用法 ,但目前却仍然没有机会分析到ioctol,主要的原因是因为不知道什么时候需要用到ioctol ,所以对ioctol的分析就感觉无地放矢 。
在这里把ioctol以外的分析先贴出来 ,希望有了解ioctol用法的同伴能够回复本贴 ,指点俺iocotl实际的用处和用法
实际上跟我的实践4是一样的功能 ,甚至测试例子都可以用实践4的例子 ,唯一不同的地方就是内存分配的地方不一样 ,增加了同时打开多个设备的处理,以及我不懂的io处理 。(其实我更想知道像阻塞处理 ,ioctol的用法等,可是本次实践却没有达到目的呵呵最多也是实践4的翻版)
既然跟实践4差不多也就不多说了 ,贴出程序 ,大家自己看
/* -*- C -*-
* main.c -- the bare scullc char module
*
* Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2001 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: _main.c.in,v 1.19 2001/07/18 22:28:18 rubini Exp $
*/
#ifndef __KERNEL__
# define __KERNEL__
#endif
#ifndef MODULE
# define MODULE
#endif
#include
#include
/* modversion stuff: no #ifdef needed if 2.0 support is not needed */
#ifdef CONFIG_MODVERSIONS
# include
#endif
#include /* printk() */
#include /* kmalloc() */
#include /* everything... */
#include /* error codes */
#include /* size_t */
#include
#include /* O_ACCMODE */
#include
/* cli(), *_flags */
#include /*VERTIFY*/
#include "scullc.h" /* local definitions */
#define __PUT_USER __put_user
#define __GET_USER __get_user
/* Kmem caches were not available in 2.0. Disallow compilation in that case */
#ifdef LINUX_20
# error "Kmem_cache functions are not available in Linux-2.0"
#else
# if defined(LINUX_22) && LINUX_VERSION_CODE < KERNEL_VERSION(2,2,18)
# error "This module needs at least 2.2.18 to run"
# endif
/* leave the #ifdef open, so 2.0 won't get other errors */
/*
* I don't use static symbols here, because register_symtab is called
*/
int scullc_major = SCULLC_MAJOR;
int scullc_devs = SCULLC_DEVS; /* number of bare scullc devices */
int scullc_qset = SCULLC_QSET;
int scullc_quantum = SCULLC_QUANTUM;
MODULE_PARM(scullc_major, "i");
MODULE_PARM(scullc_devs, "i");
MODULE_PARM(scullc_qset, "i");
MODULE_PARM(scullc_quantum, "i");
MODULE_AUTHOR("Alessandro Rubini");
ScullC_Dev *scullc_devices; /* allocated in scullc_init */
int scullc_trim(ScullC_Dev *dev);
/* declare one cache pointer: use it for all devices */
kmem_cache_t *scullc_cache;
#ifdef SCULLC_USE_PROC /* don't waste space if unused */
/*
* The proc filesystem: function to read and entry
*/
void scullc_proc_offset(char *buf, char **start, off_t *offset, int *len)
{
if (*offset == 0)
return;
if (*offset >= *len) { /* Not there yet */
*offset -= *len;
*len = 0;
}
else { /* We're into the interesting stuff now */
*start = buf + *offset;
*offset = 0;
}
}
int scullc_read_procmem(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
int i, j, quantum, qset, len = 0;
int limit = count - 80; /* Don't print more than this */
ScullC_Dev *d;
*start = buf;
for(i=0; i d=&scullc_devices[i];
if (down_interruptible (&d->sem))
return -ERESTARTSYS;
qset=d->qset; /* retrieve the features of each device */
quantum=d->quantum;
len += sprintf(buf+len,"\nDevice %i: qset %i, quantum %i, sz %li\n",
i, qset, quantum, (long)(d->size));
for (; d; d=d->next) { /* scan the list */
len += sprintf(buf+len," item at %p, qset at %p\n",d,d->data);
scullc_proc_offset (buf, start, &offset, &len);
if (len > limit)
goto out;
if (d->data && !d->next) /* dump only the last item - save space */
for (j=0; j if (d->data[j])
len += sprintf(buf+len," % 4i:%8p\n",j,d->data[j]);
scullc_proc_offset (buf, start, &offset, &len);
if (len > limit)
goto out;
}
}
out:
up (&scullc_devices[i].sem);
if (len > limit)
break;
}
*eof = 1;
return len;
}
#ifdef USE_PROC_REGISTER
static int scullc_get_info (char *buf, char **start, off_t offset,
int len, int unused)
{
int eof = 0;
return scullc_read_procmem(buf, start, offset, len, &eof, NULL);
}
struct proc_dir_entry scullc_proc_entry = {
0, /* low_ino: the inode -- dynamic */
9, "scullcmem", /* len of name and name */
S_IFREG | S_IRUGO, /* mode */
1, 0, 0, /* nlinks, owner, group */
0, NULL, /* size - unused; operations -- use default */
scullc_get_info, /* function used to read data */
/* nothing more */
};
static inline void create_proc_read_entry (const char *name, mode_t mode,
struct proc_dir_entry *base, void *read_func, void *data)
{
proc_register_dynamic (&proc_root, &scullc_proc_entry);
}
static inline void remove_proc_entry (char *name, void *parent)
{
proc_unregister (&proc_root, scullc_proc_entry.low_ino);
}
#endif /* USE_PROC_REGISTER */
#endif /* SCULLC_USE_PROC */
/*
* Open and close
*/
int scullc_open (struct inode *inode, struct file *filp)
{
int num = MINOR(inode->i_rdev);
要哭了 ,查找原码才知道阿
/*
#define MAJOR(dev) ((dev)>>8)
#define MINOR(dev) ((dev) & 0xff)
#define MKDEV(ma,mi) ((ma)<<8 | (mi))*/
ScullC_Dev *dev; /* device information */
printk("__the MINOR num = %d \n",num) ;
/* check the device number */
多同时打开4个设备scullc_devs = 4 ,
//scullc_devices在INIT的时候已经被初始化
if (num >= scullc_devs) return -ENODEV;
//scullc_devs = 4
dev = &scullc_devices[num];
/* now trim to 0 the length of the device if open was write-only */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) {
if (down_interruptible (&dev->sem)) 开 信号量互斥锁
return -ERESTARTSYS;
scullc_trim(dev); /* ignore errors */ the vloid**data kfree(data[i]) ;
up (&dev->sem); 信号量
}
/* and use filp->private_data to point to the device data */
filp->private_data = dev;
/*
struct file {
struct list_head f_list;
struct dentry *f_dentry;
struct vfsmount *f_vfsmnt;
struct file_operations *f_op;
atomic_t f_count;
unsigned int f_flags;
mode_t f_mode;
loff_t f_pos;
unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
struct fown_struct f_owner;
unsigned int f_uid, f_gid;
int f_error;
unsigned long f_version;
// needed for tty driver, and maybe others
void *private_data;
// preallocated helper kiobuf to speedup O_DIRECT //
struct kiobuf *f_iobuf;
long f_iobuf_lock;
};
*/
MOD_INC_USE_COUNT;
return 0; /* success */
}
int scullc_release (struct inode *inode, struct file *filp)
{
MOD_DEC_USE_COUNT;
return 0;
}
/*
* Follow the list
*/
ScullC_Dev *scullc_follow(ScullC_Dev *dev, int n)
{
while (n--) {
if (!dev->next) {
dev->next = kmalloc(sizeof(ScullC_Dev), GFP_KERNEL);
memset(dev->next, 0, sizeof(ScullC_Dev));
}
dev = dev->next;
continue;
}
return dev;
}
/*
* Data management: read and write
*/
ssize_t scullc_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos) 纪录文件当前的读写位置
{
ScullC_Dev *dev = filp->private_data; /* the first listitem */
ScullC_Dev *dptr;
int quantum = dev->quantum;
int qset = dev->qset;
int itemsize = quantum * qset; /* how many bytes in the listitem */
int item, s_pos, q_pos, rest;
ssize_t retval = 0;
if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
if (*f_pos > dev->size)
goto nothing;
if (*f_pos + count > dev->size)
count = dev->size - *f_pos;
/* find listitem, qset index, and offset in the quantum */
item = ((long) *f_pos) / itemsize;
/*此处需要说明一下 ,比如一个设备文件同时可以打开4个设备
,那么 一个设备的数据长度为quantum * qset,那么如果是第2个的话
就应该是在 quantum * qset之后的开始处理,所以用设备的当前读写
位置/一个设备的长度就可以得出当前打开的是第几个设备
*/
rest = ((long) *f_pos) % itemsize;
s_pos = rest / quantum; q_pos = rest % quantum;
/* follow the list up to the right position (defined elsewhere) */
dptr = scullc_follow(dev, item);
file://dev[item]
时dptr已经指向了我们读取的设备正确地址了,这样 ,
可以开始考虑真正的相对于某个专门设备的读写pos了
如我们打开第2个scull设备,那么现在的dptr实际上是dev[1]
后spos 实际上 是相对dev[1]的读写位置 ,这个位置是以quantum
单位的,例如dev[1] ->data[spos] ,可是我们读的时候是以byte为单位的
以此时用到了q_pos,表示相对于dev[1] ->data[spos] 的byte为单位的偏移,
if (!dptr->data)
goto nothing; /* don't fill holes */
if (!dptr->data[s_pos])
goto nothing;
if (count > quantum - q_pos) 次读写的数据不能超过quantum
边 界,也就是说不能次读取2个
的内容
count = quantum - q_pos;
/* read only up to the end of this quantum */
数据拷贝到用户空间传进来的参数数组
if (copy_to_user (buf, dptr->data[s_pos]+q_pos, count)) {
retval = -EFAULT;
goto nothing;
}
up (&dev->sem); 知道怎么表示了反正就是放开互斥量
*f_pos += count; 改设备当前的pos ,下次读写从这里开始
return count;
nothing:
up (&dev->sem);
return retval;
}
ssize_t scullc_write (struct file *filp, const char *buf, size_t count,
loff_t *f_pos)
{
ScullC_Dev *dev = filp->private_data;
ScullC_Dev *dptr;
int quantum = dev->quantum;
int qset = dev->qset;
int itemsize = quantum * qset;
int item, s_pos, q_pos, rest;
ssize_t retval = -ENOMEM; /* our most likely error */
if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
/* find listitem, qset index and offset in the quantum */
item = ((long) *f_pos) / itemsize;
rest = ((long) *f_pos) % itemsize;
s_pos = rest / quantum; q_pos = rest % quantum;
/* follow the list up to the right position */
dptr = scullc_follow(dev, item);
if (!dptr->data) {
dptr->data = kmalloc(qset * sizeof(void *), GFP_KERNEL);
if (!dptr->data)
goto nomem;
memset(dptr->data, 0, qset * sizeof(char *));
}
/* Allocate a quantum using the memory cache */
if (!dptr->data[s_pos]) {
dptr->data[s_pos] =
kmem_cache_alloc(scullc_cache, GFP_KERNEL);
if (!dptr->data[s_pos])
goto nomem;
memset(dptr->data[s_pos], 0, scullc_quantum);
}
if (count > quantum - q_pos)
count = quantum - q_pos; /* write only up to the end of this quantum */
if (copy_from_user (dptr->data[s_pos]+q_pos, buf, count)) {
retval = -EFAULT;
goto nomem;
}
*f_pos += count;
/* update the size */
if (dev->size < *f_pos)
dev->size = *f_pos;
up (&dev->sem);
return count;
nomem:
up (&dev->sem);
return retval;
}
/*
* The ioctl() implementation
*/
int scullc_ioctl (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
int err= 0, ret = 0, tmp;
/* don't even decode wrong cmds: better returning ENOTTY than EFAULT */
if (_IOC_TYPE(cmd) != SCULLC_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULLC_IOC_MAXNR) return -ENOTTY;
/*
* the type is a bitmask, and VERIFY_WRITE catches R/W
* transfers. Note that the type is user-oriented, while
* verify_area is kernel-oriented, so the concept of "read" and
* "write" is reversed
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));
else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd));
if (err) return -EFAULT;
switch(cmd) {
case SCULLC_IOCRESET:
scullc_qset = SCULLC_QSET;
scullc_quantum = SCULLC_QUANTUM;
break;
case SCULLC_IOCSQUANTUM: /* Set: arg points to the value */
ret = __GET_USER(scullc_quantum, (int *) arg);
break;
case SCULLC_IOCTQUANTUM: /* Tell: arg is the value */
scullc_quantum = arg;
break;
case SCULLC_IOCGQUANTUM: /* Get: arg is pointer to result */
ret = __PUT_USER (scullc_quantum, (int *) arg);
break;
case SCULLC_IOCQQUANTUM: /* Query: return it (it's positive) */
return scullc_quantum;
case SCULLC_IOCXQUANTUM: /* eXchange: use arg as pointer */
tmp = scullc_quantum;
ret = __GET_USER(scullc_quantum, (int *) arg);
if (ret == 0)
ret = __PUT_USER(tmp, (int *) arg);
break;
case SCULLC_IOCHQUANTUM: /* sHift: like Tell + Query */
tmp = scullc_quantum;
scullc_quantum = arg;
return tmp;
case SCULLC_IOCSQSET:
ret = __GET_USER(scullc_qset, (int *) arg);
break;
case SCULLC_IOCTQSET:
scullc_qset = arg;
break;
case SCULLC_IOCGQSET:
ret = __PUT_USER(scullc_qset, (int *)arg);
break;
case SCULLC_IOCQQSET:
return scullc_qset;
case SCULLC_IOCXQSET:
tmp = scullc_qset;
ret = __GET_USER(scullc_qset, (int *) arg);
if (ret == 0)
ret = __PUT_USER(tmp, (int *)arg);
break;
case SCULLC_IOCHQSET:
tmp = scullc_qset;
scullc_qset = arg;
return tmp;
default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;
}
return ret;
}
/*
* The "extended" operations
*/
loff_t scullc_llseek (struct file *filp, loff_t off, int whence)
{
ScullC_Dev *dev = filp->private_data;
long newpos;
switch(whence) {
case 0: /* SEEK_SET */
newpos = off;
break;
case 1: /* SEEK_CUR */
newpos = filp->f_pos + off;
break;
case 2: /* SEEK_END */
newpos = dev->size + off;
break;
default: /* can't happen */
return -EINVAL;
}
if (newpos<0) return -EINVAL;
filp->f_pos = newpos;
return newpos;
}
/*
* The 2.0 wrappers
*/
#ifdef LINUX_20
int scullc_lseek_20 (struct inode *ino, struct file *f,
off_t offset, int whence)
{
return (int)scullc_llseek(f, offset, whence);
}
int scullc_read_20 (struct inode *ino, struct file *f, char *buf, int count)
{
return (int)scullc_read(f, buf, count, &f->f_pos);
}
int scullc_write_20 (struct inode *ino, struct file *f, const char *b, int c)
{
return (int)scullc_write(f, b, c, &f->f_pos);
}
void scullc_release_20 (struct inode *ino, struct file *f)
{
scullc_release(ino, f);
}
#define scullc_llseek scullc_lseek_20
#define scullc_read scullc_read_20
#define scullc_write scullc_write_20
#define scullc_release scullc_release_20
#define llseek lseek
#endif /* LINUX_20 */
/*
* The fops
*/
struct file_operations scullc_fops = {
llseek: scullc_llseek,
read: scullc_read,
write: scullc_write,
ioctl: scullc_ioctl,
open: scullc_open,
release: scullc_release,
};
int scullc_trim(ScullC_Dev *dev)
{
ScullC_Dev *next, *dptr;
int qset = dev->qset; /* "dev" is not-null */
int i;
if (dev->vmas) /* don't trim: there are active mappings */
return -EBUSY;
for (dptr = dev; dptr; dptr = next) { /* all the list items */
if (dptr->data) {
for (i = 0; i < qset; i++)
if (dptr->data[i])
kmem_cache_free(scullc_cache, dptr->data[i]);
放data指向的指针对应的内容
kfree(dptr->data);
dptr->data=NULL;
}
next=dptr->next;
if (dptr != dev) kfree(dptr); /* all of them but the first */
}
dev->size = 0;
dev->qset = scullc_qset;
dev->quantum = scullc_quantum;
dev->next = NULL;
return 0;
}
/*
* Finally, the module stuff
*/
int scullc_init(void)
{
int result, i;
SET_MODULE_OWNER(&scullc_fops);
/*
* Register your major, and accept a dynamic number
*/
result = register_chrdev(scullc_major, "scullc", &scullc_fops);
if (result < 0) return result;
if (scullc_major == 0) scullc_major = result; /* dynamic */
/*
* allocate the devices -- we can't have them static, as the number
* can be specified at load time
*/
scullc_devices = kmalloc(scullc_devs * sizeof (ScullC_Dev), GFP_KERNEL);
if (!scullc_devices) {
result = -ENOMEM;
goto fail_malloc;
}
memset(scullc_devices, 0, scullc_devs * sizeof (ScullC_Dev));
始化设备信息数组
for (i=0; i < scullc_devs; i++) {
/*
#define SCULLC_QUANTUM 4000 // use a quantum size like scull
#define SCULLC_QSET 500
*/
scullc_devices[i].quantum = scullc_quantum;
scullc_devices[i].qset = scullc_qset;
sema_init (&scullc_devices[i].sem, 1);
步信号量初始化,大哥快疯了
出函数原型?
/*
static inline void sema_init (struct semaphore *sem, int val)
{
* *sem = (struct semaphore)__SEMAPHORE_INITIALIZER((*sem),val);
*
* i'd rather use the more flexible initialization above, but sadly
* GCC 2.7.2.3 emits a bogus warning. EGCS doesnt. Oh well.
atomic_set(&sem->count, val);
sem->sleepers = 0;
init_waitqueue_head(&sem->wait);
#if WAITQUEUE_DEBUG
sem->__magic = (int)&sem->__magic;
#endif
}
*/
}
/* init_module: create a cache for our quanta */
scullc_cache =
kmem_cache_create("scullc", scullc_quantum,
0, SLAB_HWCACHE_ALIGN,
NULL, NULL); /* no ctor/dtor */
if (!scullc_cache) {
result = -ENOMEM;
goto fail_malloc2;
}
#ifdef SCULLC_USE_PROC /* only when available */
create_proc_read_entry("scullcmem", 0, NULL, scullc_read_procmem, NULL);
#endif
return 0; /* succeed */
fail_malloc2:
kfree(scullc_devices);
fail_malloc:
unregister_chrdev(scullc_major, "scullc");
return result;
}
void scullc_cleanup(void)
{
int i;
unregister_chrdev(scullc_major, "scullc");
#ifdef SCULLC_USE_PROC
remove_proc_entry("scullcmem", 0);
#endif
for (i=0; i scullc_trim(scullc_devices+i);
kfree(scullc_devices);
/* cleanup_module: release the cache of our quanta */
kmem_cache_destroy(scullc_cache);
}
#endif /* not linux-2.0 */
module_init(scullc_init);
module_exit(scullc_cleanup);