Chinaunix首页 | 论坛 | 博客
  • 博客访问: 19271222
  • 博文数量: 7460
  • 博客积分: 10434
  • 博客等级: 上将
  • 技术积分: 78178
  • 用 户 组: 普通用户
  • 注册时间: 2008-03-02 22:54
文章分类

全部博文(7460)

文章存档

2011年(1)

2009年(669)

2008年(6790)

分类: 系统运维

2008-03-21 17:05:45

如何利用无线网桥实现E1接入

  采用IEEE 802.11a标准的无线网桥设备的大量出现,为满足用户业务的无线接入需求,提供了廉价有效的传输手段。例如5.8G无线网桥,可以在几公里到几十公里范围内实现两点间的无线通信,短距离还可以实现非视距通信。这类设备价格低,安装快捷方便,而且因为处于ISM频段,国家无委没有对其进行统一的分配,因此比较容易获得批准使用,有利于其在接入网建设中大规模应用。< /P>

  但是对于希望实现无线E1接入的客户,廉价的无线网桥似乎并不合适,原因是这类网桥基于IP技术,通常并不具备E1接口,而只有以太网接口。为此,不得不采用昂贵得多的基于电路或ATM的微波设备。无线网桥则被大规模应用在不需要传送E1业务的单纯数据传输场合。

  能否利用无线网桥提供E1服务呢?答案是肯定的。通过E1 over以太网接口转换器设备,可以在无线网桥建立的以太网链路上仿真E1通道。但是,这样的仿真通道是否能满足E1设备的需求呢?

  E1信号源自PCM编码时分复用技术,以2048kbps恒定速率传送信息,俗称“2兆口”。以太网则采用统计复用技术,其传输和交换基于数据包。时分复用技术具有带宽固定,传输时延小而稳定,信号定时透明度高,抖动、漂移小等特点,适合于话音、图像等对传输实时性和定时稳定性要求高的应用。基于数据包的统计复用技术具有更高的复用效率,适合于对时延要求不严格、通常不需要准确恢复定时信息的数据传输场合。

  由于E1和IP在技术上具有很大的差异,利用以太网提供仿真E1通道并非易事,难点在于在网络出口有效地重建E1码流的定时信息。需要克服以太网自身特有的包延时随机、没有有效的定时传送机制、传输误码或碰撞会导致丢包等缺点。

  E1 over以太网接口转换器必须能够解决上述问题,才能真正替代传统的电路型微波设备。判断的主要依据包括:E1码流时钟恢复的稳定性和附加处理延时。实践证明,性能优异的接口转换器与无线网桥配合,能够很好地用于绝大多数基于E1的应用场合。

  时钟稳定性包括时钟抖动、漂移和频率保持特性。抖动会引起E1终端设备产生误码,漂移会导致滑帧和其它类型的业务损伤,时钟频率的跳变则会导致帧失步和重新捕捉,表现为严重的误码。目前市场上比较好的E1 over以太网接口转换器,抖动值通常在0.1UI以下,恢复时钟的漂移可以控制在(5ppm以内(如果应用场合有独立的时钟网络,则此项指标不很重要)。当包含E1数据的数据包发生零星丢失时(在无线条件下尤其不可避免),是否能够维持时钟频率的稳定而不发生跳变,也是这类设备的一项重要指标。

  用于实时双向通信时,处理延时也是E1信道的一项重要指标。例如用于没有回声抵消器的PCM语音业务时,单程的总延时应在50毫秒以内。如果接近100毫秒,可以听到明显的回声,影响通话质量。这一延时不仅包括接口转换器的处理延时,还要包括无线网桥的传输延时、数据包传递抖动所需缓冲引入的延时、话音的编解码处理延时、以及电话传输和交换系统引入的其它延时等等,因此要求E1 over以太网设备要引入尽可能小的处理延时。算法好的设备,处理延时可以达到6毫秒以内。

  有些E1 over IP设备提供了E1信道的分帧处理,这对于不需要在两点间传送一个完整E1,而只需要传送若干个64kbps时隙的应用,是很有意义的。通常,这类设备可以将每一个时隙码流单独封装到IP包中,因此在IP网络中的传输单元以时隙为单位,具有很高的灵活性,例如将一个E1信号拆分后送到多个远端站点。由于无需传送整个E1信号,因而可以节省带宽。分帧封装的主要困难在于效率和时延之间的矛盾,为了达到较高的效率,每个数据包必须具有一定的长度,而对于64kbps码流,其封装时延会长达同样的包封长度下E1码流的32倍,往往给实时语音业务造成严重的回声。

  将E1数据封装成数据包的方式会影响数据包在网络中的性能。有些E1 over以太网接口转换器允许用户自己选择各种包封方式,以便与传输网络特性相匹配,获得最佳效果。包封方式包括:包封长度、是否加入IP包头、是否加入VLAN包头等。对于无线网桥而言,通常用于点到点连接,无需路由寻址,一般无需加入IP包头和VLAN包头,这样可以节省带宽,而无线网桥的带宽通常并不充裕。另外,一些无线网桥的带宽依赖于包长,因此选择合适的E1数据包封长度有时是至关重要的。

  对于需要用无线网桥同时提供E1和以太网接入的应用,例如网、话一体的话吧,还应该考察转换器的另一项功能,即是否能够对共同传输的数据业务进行严格的流量控制。由于无线网桥的有效传输带宽通常并不很大,而且通常不能为E1数据包提供充分的QoS保证,因此当传送突发数据业务时,很自然会对E1数据包产生冲击,造成丢包,严重干扰E1信号的传输,产生误码,甚至中断。因此,对于此类应用,应该选择具有下行以太网接口,并能有效限制往返下行接口数据包的优先级的产品,并注意连接方式,如图所示。

  在E1 over以太网接口适配器上提供各类告警指示和环回控制功能,对于作为E1无线传输设备的应用方式,是有实际意义的。在工程安装和故障检修阶段,了解本端和对端E1接口的信号状态,控制E1接口的环回以便用E1误码仪测试通道性能,观察丢包现象等,可以帮助工程人员了解情况,判断故障所在。

  总之,廉价无线网桥设备的推出,不仅实现了数据业务的无线接入,也为传统E1信号的无线接入提供了很好的解决方案。在绝大多数场合,无线网桥和E1 over以太网接口适配器构建的无线系统完全可以取代光纤、微波等传统传输方式,且具有更好的性能价格比。

如何利用无线网桥实现E1接入

  采用IEEE 802.11a标准的无线网桥设备的大量出现,为满足用户业务的无线接入需求,提供了廉价有效的传输手段。例如5.8G无线网桥,可以在几公里到几十公里范围内实现两点间的无线通信,短距离还可以实现非视距通信。这类设备价格低,安装快捷方便,而且因为处于ISM频段,国家无委没有对其进行统一的分配,因此比较容易获得批准使用,有利于其在接入网建设中大规模应用。< /P>

  但是对于希望实现无线E1接入的客户,廉价的无线网桥似乎并不合适,原因是这类网桥基于IP技术,通常并不具备E1接口,而只有以太网接口。为此,不得不采用昂贵得多的基于电路或ATM的微波设备。无线网桥则被大规模应用在不需要传送E1业务的单纯数据传输场合。

  能否利用无线网桥提供E1服务呢?答案是肯定的。通过E1 over以太网接口转换器设备,可以在无线网桥建立的以太网链路上仿真E1通道。但是,这样的仿真通道是否能满足E1设备的需求呢?

  E1信号源自PCM编码时分复用技术,以2048kbps恒定速率传送信息,俗称“2兆口”。以太网则采用统计复用技术,其传输和交换基于数据包。时分复用技术具有带宽固定,传输时延小而稳定,信号定时透明度高,抖动、漂移小等特点,适合于话音、图像等对传输实时性和定时稳定性要求高的应用。基于数据包的统计复用技术具有更高的复用效率,适合于对时延要求不严格、通常不需要准确恢复定时信息的数据传输场合。

  由于E1和IP在技术上具有很大的差异,利用以太网提供仿真E1通道并非易事,难点在于在网络出口有效地重建E1码流的定时信息。需要克服以太网自身特有的包延时随机、没有有效的定时传送机制、传输误码或碰撞会导致丢包等缺点。

  E1 over以太网接口转换器必须能够解决上述问题,才能真正替代传统的电路型微波设备。判断的主要依据包括:E1码流时钟恢复的稳定性和附加处理延时。实践证明,性能优异的接口转换器与无线网桥配合,能够很好地用于绝大多数基于E1的应用场合。

  时钟稳定性包括时钟抖动、漂移和频率保持特性。抖动会引起E1终端设备产生误码,漂移会导致滑帧和其它类型的业务损伤,时钟频率的跳变则会导致帧失步和重新捕捉,表现为严重的误码。目前市场上比较好的E1 over以太网接口转换器,抖动值通常在0.1UI以下,恢复时钟的漂移可以控制在(5ppm以内(如果应用场合有独立的时钟网络,则此项指标不很重要)。当包含E1数据的数据包发生零星丢失时(在无线条件下尤其不可避免),是否能够维持时钟频率的稳定而不发生跳变,也是这类设备的一项重要指标。

  用于实时双向通信时,处理延时也是E1信道的一项重要指标。例如用于没有回声抵消器的PCM语音业务时,单程的总延时应在50毫秒以内。如果接近100毫秒,可以听到明显的回声,影响通话质量。这一延时不仅包括接口转换器的处理延时,还要包括无线网桥的传输延时、数据包传递抖动所需缓冲引入的延时、话音的编解码处理延时、以及电话传输和交换系统引入的其它延时等等,因此要求E1 over以太网设备要引入尽可能小的处理延时。算法好的设备,处理延时可以达到6毫秒以内。

  有些E1 over IP设备提供了E1信道的分帧处理,这对于不需要在两点间传送一个完整E1,而只需要传送若干个64kbps时隙的应用,是很有意义的。通常,这类设备可以将每一个时隙码流单独封装到IP包中,因此在IP网络中的传输单元以时隙为单位,具有很高的灵活性,例如将一个E1信号拆分后送到多个远端站点。由于无需传送整个E1信号,因而可以节省带宽。分帧封装的主要困难在于效率和时延之间的矛盾,为了达到较高的效率,每个数据包必须具有一定的长度,而对于64kbps码流,其封装时延会长达同样的包封长度下E1码流的32倍,往往给实时语音业务造成严重的回声。

  将E1数据封装成数据包的方式会影响数据包在网络中的性能。有些E1 over以太网接口转换器允许用户自己选择各种包封方式,以便与传输网络特性相匹配,获得最佳效果。包封方式包括:包封长度、是否加入IP包头、是否加入VLAN包头等。对于无线网桥而言,通常用于点到点连接,无需路由寻址,一般无需加入IP包头和VLAN包头,这样可以节省带宽,而无线网桥的带宽通常并不充裕。另外,一些无线网桥的带宽依赖于包长,因此选择合适的E1数据包封长度有时是至关重要的。

  对于需要用无线网桥同时提供E1和以太网接入的应用,例如网、话一体的话吧,还应该考察转换器的另一项功能,即是否能够对共同传输的数据业务进行严格的流量控制。由于无线网桥的有效传输带宽通常并不很大,而且通常不能为E1数据包提供充分的QoS保证,因此当传送突发数据业务时,很自然会对E1数据包产生冲击,造成丢包,严重干扰E1信号的传输,产生误码,甚至中断。因此,对于此类应用,应该选择具有下行以太网接口,并能有效限制往返下行接口数据包的优先级的产品,并注意连接方式,如图所示。

  在E1 over以太网接口适配器上提供各类告警指示和环回控制功能,对于作为E1无线传输设备的应用方式,是有实际意义的。在工程安装和故障检修阶段,了解本端和对端E1接口的信号状态,控制E1接口的环回以便用E1误码仪测试通道性能,观察丢包现象等,可以帮助工程人员了解情况,判断故障所在。

  总之,廉价无线网桥设备的推出,不仅实现了数据业务的无线接入,也为传统E1信号的无线接入提供了很好的解决方案。在绝大多数场合,无线网桥和E1 over以太网接口适配器构建的无线系统完全可以取代光纤、微波等传统传输方式,且具有更好的性能价格比。

阅读(502) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~