Chinaunix首页 | 论坛 | 博客
  • 博客访问: 798130
  • 博文数量: 161
  • 博客积分: 10005
  • 博客等级: 中将
  • 技术积分: 1445
  • 用 户 组: 普通用户
  • 注册时间: 2006-12-04 15:08
文章分类

全部博文(161)

文章存档

2014年(1)

2013年(1)

2011年(2)

2010年(18)

2009年(26)

2008年(18)

2007年(66)

2006年(29)

我的朋友

分类:

2006-12-12 15:21:36

这几天有一道Google的面试题在论坛,题目如下:“有一个100层高的大厦,你手中有两个相同的玻璃围棋子。从这个大厦的某一层扔下围棋子就会碎,用你手中的这两个玻璃围棋子,找出一个最优的策略,来得知那个临界层面。”下面给出我的分析和解答。

 

为了得到两个棋子的最优策略,我们先简化问题,看看一个棋子的情况。如果手中只有一个棋子,为了得知临界层面,你只有一种选择:从2楼开始,一层一层地试,直到棋子被打碎,此时你站的楼层就是所求的临界层面。在最差的情况下,我们需要投掷99-2+1=98次,你可能奇怪为什么不是100-2+1=99次,那是因为题目已经告诉我们“从这个大厦的某一层扔下围棋子就会碎”,所以在99层扔下来还没碎的话就不用去100层了——从那里扔它一定会碎。

 

从一个棋子的策略我们可以看出,一个棋子就足以解答这个问题了。现在又多了一个棋子,该如何利用它呢?很自然地,我们希望能通过这个棋子缩小这种一层一层查找的范围。为了缩小范围,我们将整个大厦的层数分成x段,在这x段中查找那个临界段,然后在临界段中再一层一层地找临界层。比如可以将大楼分成4段,我们分别在25层、50层、75层投掷棋子,以确定临界段;如果临界段在25层到50层,我们再从26层开始一层一层查找临界层。

 

分析到这里,问题就转化成了如何确定分段数x使棋子投掷的次数最少的问题。在最差的情况下,要确定临界段,我们需要投掷100/x-1次;确定了临界段之后要确定临界层,我们需要再投掷x-1次。因此,问题就成了求函数f(x)=(100/x-1)+(x-1)的最小值问题。先对f(x)求导,f’(x)=1-100/x2,令f’(x)=0求出驻点x=10(x=-10舍去)。由于f(x)存在最小值且只有一个驻点,所以当x=10f(x)取得最小值,最小值为18。这样就解答了这个问题。

 

其实10这个结果也很容易直接看出来。在只有一个棋子时,我们相当于把整个大厦分成了一段,这一段有100层。在有两个棋子时,我们有很多分法,但无论怎么分,如果分成k1段,每段有k2层,那么就有k1k2=100。在最坏的情况下,我们需要投掷(k1-1)+(k2-1)次。因此问题也可以表述成在k1k2=100的条件约束下,如何让函数f(k1,k2)= k1+k2最小。在初等数学中,我们知道在矩形面积一定的情况下,正方形的周长最小。利用这个结论,我们可以直接得出结论k1=k2=10

 

现在问题已经完满解决,但我还想把这个问题扩展一下,把它变成“m层楼n个棋子”的情况。首先来看这样一个问题,给定m层楼,多少个棋子就“足够”了,也就是说,再多的棋子也不能加快查找的过程。在我所能想到的方法里,二分法应该是最优的,如果按二分法来查找,则需要ceiling(log2m)个棋子(ceiling是向上取整函数),超过这个数再多的棋子也无益。

 

如果n>=ceiling(log2m),那就采用二分法,现在考虑n< ceiling(log2m)的情况。前面已经看到,当n=2时,问题可以表述成在k1k2=100的条件约束下,求函数f(k1,k2)= k1+k2的最小值。类似地,在n个棋子的情况下,问题可以表述成在k1k2…kn=m的条件约束下,求函数f(k1,k2,…,kn)=k1+k2+…+kn的最小值。利用拉格朗日乘数法,我们可以很容易地求出:当k1=k2=…=kn=nm时,这个多元函数取得最值。nm有可能不是整数,因此这只是一个理论上的结果。

 

我们换一个思路考虑,m层楼n个棋子的问题其实就是如何将m分解成n个因子相乘,从而让各个因子之和最小。如何分解m使得策略最优就成了问题的关键。前面得出的结论提示我们尽量让各个因子相等或者相差较小,它们相加的结果才会较小。比如,100层楼3个棋子的情况,554应该是一个最优的选择。

 

考虑到这里,又有一个问题出现了:是不是m分解的越多越好呢?比如,将100分解成1010好呢,还是2510好?这个问题其实就是在问,两个大于1的整数,它们的和大呢还是积大。很明显,当然是积大,因此将m分解的越多越好。

 

数论告诉我们,质数是整数的基础,所有整数都可以分解成若干个质数的乘积。因此,如果将上面的方法发挥到极致,那就要求我们把m分解成质数的乘积。当然,如果棋子足够多,这并不是最优的方法,对质数层楼的段,你仍然可以采用二分法。

阅读(10476) | 评论(32) | 转发(0) |
给主人留下些什么吧!~~

dzt_tomdu2008-09-12 12:45:19

有数据结构吗?前提是什么?有没有数据库?

dzt_tomdu2008-09-12 12:45:13

有数据结构吗?前提是什么?有没有数据库?

chinaunix网友2008-09-02 11:47:00

题目:有若干教师,每个教师只有姓名,一个教师可以指导多名研究生,每名研究生有姓名,研究方向,和班号数据,编写一个程序,要求输出每个教师指导的所有研究生的姓名,研究方向和班号数据,(要求用C++编写) 谢了,很急,