Chinaunix首页 | 论坛 | 博客
  • 博客访问: 694737
  • 博文数量: 33
  • 博客积分: 10032
  • 博客等级: 上将
  • 技术积分: 1383
  • 用 户 组: 普通用户
  • 注册时间: 2006-08-22 18:53
文章分类

全部博文(33)

文章存档

2011年(4)

2010年(10)

2009年(14)

2008年(5)

我的朋友

分类:

2009-05-31 13:30:53

我们以e1000g网卡驱动为例,驱动程序由pci_config_setup(9F)或者ddi_regs_map_setup(9F)得到访问配置地址空间的句柄。下面我们通过mdb来看看这个句柄是个怎样的数据结构。

# mdb -k
> ::prtconf ! grep e1000g
        300004271b0      pci8086,1001, instance #0 (driver name: e1000g)
> 300004271b0::print -t struct dev_info devi_driver_data |::print -t e1000g_t osdep.cfg_handle |::print -t struct ddi_acc_hdl ah_addr
caddr_t ah_addr = 0x29ebf9e3800
> 0x29ebf9e3800::sfmmu_vtop
virtual 29ebf9e3800 mapped to physical 7fe00001800

x86使用::vatopfn
例如:
> 0xffffff00bf0fc000::vatopfn
        level=0 htable=ffffff01031803d8 pte=80000000f00c8573
        level=1 htable=ffffff0103180a98 pte=583c5027
        level=2 htable=ffffff0103157df0 pte=5a66d027
        level=3 htable=ffffff01031572b0 pte=5afff027
Virtual address 0xffffff00bf0fc000 maps pfn 0xf00c8

> 300004271b0::print -t struct dev_info devi_driver_data |::print -t e1000g_t osdep.cfg_handle |::print -t struct ddi_acc_hdl
{
    int ah_vers = 0x1
    void *ah_bus_private = 0
    void *ah_platform_private = 0x60011a99cc0
    dev_info_t *ah_dip = 0x300004271b0
    uint_t ah_rnumber = 0
    caddr_t ah_addr = 0x29ebf9e3800
    off_t ah_offset = 0
    off_t ah_len = 0
    uint_t ah_hat_flags = 0x2000
    pfn_t ah_pfn = 0x3ff00000
    uint_t ah_pnum = 0x1
    ulong_t ah_xfermodes = 0
    ddi_device_acc_attr_t ah_acc = {
        ushort_t devacc_attr_version = 0x2
        uchar_t devacc_attr_endian_flags = 0x1
        uchar_t devacc_attr_dataorder = 0
        uchar_t devacc_attr_access = 0x2
    }
}
驱动程序通过pci_config_setup(9F)或者ddi_regs_map_setup(9F)建立了PCI设备配置地址空间和内核虚拟地址之间的映射,在上例中(SPARC),配置地址空间的物理地址是0x7fe00001800,内核虚拟地址是0x29ebf9e3800。这个物理地址也可以通过pcitool得到验证:

# pcitool -v
...
Bus Number: 0 Device Number: 3 Function Number: 0
Physical Address: 0x7fe00001800
Vendor ID: 8086
Device ID: 1026
Command: 0157
Status: 0230
Revision ID: 04
Class Code: 020000
Cache Line Size: 10
Latency Timer: 40
Header Type: 00
BIST: 00
Base Address Register 0 (@10): 00100004
Base Address Register 1 (@14): 00000000
Base Address Register 2 (@18): 00140004
Base Address Register 3 (@1C): 00000000
Base Address Register 4 (@20): 00000941
Base Address Register 5 (@24): 00000000
Expansion ROM Base Address Register (@30): 00180000
...

BAR0的内核虚拟地址和物理地址也可以通过类似的方法得到:
# mdb -k
> ::prtconf ! grep e1000g
        300004271b0      pci8086,1001, instance #0 (driver name: e1000g)
> 300004271b0::print -t struct dev_info devi_driver_data |::print -t e1000g_t osdep.reg_handle |::print -t struct ddi_acc_hdl ah_addr
caddr_t ah_addr = 0x29ebf9e4000
> 0x29ebf9e4000::sfmmu_vtop
virtual 29ebf9e4000 mapped to physical 7ff00100000
> 300004271b0::print -t struct dev_info devi_driver_data |::print -t e1000g_t osdep.reg_handle |::print -t struct ddi_acc_hdl
{
    int ah_vers = 0x1
    void *ah_bus_private = 0
    void *ah_platform_private = 0x60011a99b80
    dev_info_t *ah_dip = 0x300004271b0
    uint_t ah_rnumber = 0x1
    caddr_t ah_addr = 0x29ebf9e4000
    off_t ah_offset = 0
    off_t ah_len = 0x20000
    uint_t ah_hat_flags = 0x2000
    pfn_t ah_pfn = 0x3ff80080
    uint_t ah_pnum = 0x10
    ulong_t ah_xfermodes = 0
    ddi_device_acc_attr_t ah_acc = {
        ushort_t devacc_attr_version = 0x1
        uchar_t devacc_attr_endian_flags = 0x1
        uchar_t devacc_attr_dataorder = 0
        uchar_t devacc_attr_access = 0x1
    }
}
或者
> 300004271b0::print -t struct dev_info devi_driver_data |::print -t e1000g_t shared.hw_addr
u8 *shared.hw_addr = 0x29ebf9e4000

每个PCI function有256字节配置空间,可以通过CF8/CFC的方法读取相应配置空间的内容。PCI Express的配置空间则可以达到4K。因此所有配置空间可多达256M(2^8 * 2^5 * 2^3 * 4K = 256M)。配置空间初始的物理地址在x86平台上由ACPI的MCFG table提供,可以通过下面的C程序提供相应PCI设备的配置空间相对物理地址。

#include

#define PCI_REG_FUNC_SHIFT      8               /* Offset of function bits */
#define PCI_REG_DEV_SHIFT       11              /* Offset of device bits */
#define PCI_REG_BUS_SHIFT       16              /* Offset of bus bits */

#define PCIEX_BDF_OFFSET_DELTA  4
#define PCIEX_REG_FUNC_SHIFT    (PCI_REG_FUNC_SHIFT + PCIEX_BDF_OFFSET_DELTA)
#define PCIEX_REG_DEV_SHIFT     (PCI_REG_DEV_SHIFT + PCIEX_BDF_OFFSET_DELTA)
#define PCIEX_REG_BUS_SHIFT     (PCI_REG_BUS_SHIFT + PCIEX_BDF_OFFSET_DELTA)

int main(int argc, char *argv[])
{
        int phys_addr, bus_no=0, dev_no=0, func_no=1;

        phys_addr =
            ((bus_no << PCIEX_REG_BUS_SHIFT) |
            (dev_no << PCIEX_REG_DEV_SHIFT) |
            (func_no << PCIEX_REG_FUNC_SHIFT));

        printf("%x\n", phys_addr);

        return 0;
}

那么如何通过mdb来找到这个初始物理地址呢?
# mdb -k
> ::prtconf ! grep npe
    ffffff0147cf7788 pciex_root_complex, instance #0 (driver name: npe)
> ffffff0147cf7788::print -t struct dev_info devi_hw_prop_ptr |::print -t ddi_prop_t
{
    struct ddi_prop *prop_next = 0xffffff01484df260
    dev_t prop_dev = 0xffffffffffffffff
    char *prop_name = 0xffffff0148513c70 "available"
    int prop_flags = 0x100
    int prop_len = 0x438
    caddr_t prop_val = 0xffffff01471c4b80
}
> 0xffffff01484df260::print -t struct ddi_prop
{
    struct ddi_prop *prop_next = 0xffffff01484df288
    dev_t prop_dev = 0xffffffffffffffff
    char *prop_name = 0xffffff0148513c80 "bus-range"
    int prop_flags = 0x100
    int prop_len = 0x8
    caddr_t prop_val = 0xffffff0148343be8
}
> 0xffffff01484df288::print -t struct ddi_prop
{
    struct ddi_prop *prop_next = 0xffffff01484df5f8
    dev_t prop_dev = 0xffffffffffffffff
    char *prop_name = 0xffffff0148343bd8 "ranges"
    int prop_flags = 0x100
    int prop_len = 0x150
    caddr_t prop_val = 0xffffff01484a9680
}
> 0xffffff01484df5f8::print -t struct ddi_prop
{
    struct ddi_prop *prop_next = 0xffffff01484dfda0
    dev_t prop_dev = 0xffffffffffffffff
    char *prop_name = 0xffffff0148513eb0 "acpi-namespace"
    int prop_flags = 0x200
    int prop_len = 0xb
    caddr_t prop_val = 0xffffff0148513e90
}
> 0xffffff01484dfda0::print -t struct ddi_prop
{
    struct ddi_prop *prop_next = 0xffffff0146e827d8
    dev_t prop_dev = 0xffffffffffffffff
    char *prop_name = 0xffffff0148343a80 "ecfg"
    int prop_flags = 0x1000
    int prop_len = 0x20
    caddr_t prop_val = 0xffffff01484dde70
}
> 0xffffff01484dde70/K
0xffffff01484dde70:             f4000000      
或者更简单一点
> ffffff0147cf7788::devinfo
...
            name='ecfg' type=int64 items=4
                value=00000000f4000000.0000000000000000.0000000000000000.000000000000003f
...
# pcitool -v | grep Physical
Physical Address: 0xf4000000
Physical Address: 0xf4008000
Physical Address: 0xf40d0000
Physical Address: 0xf40d1000
Physical Address: 0xf40d7000
Physical Address: 0xf40d8000
Physical Address: 0xf40e0000
Physical Address: 0xf40e1000
Physical Address: 0xf40e3000
Physical Address: 0xf40e5000
Physical Address: 0xf40e8000
Physical Address: 0xf40e9000
Physical Address: 0xf40ea000
Physical Address: 0xf40ef000
Physical Address: 0xf40f0000
Physical Address: 0xf40f8000
Physical Address: 0xf40f9000
Physical Address: 0xf40fa000
Physical Address: 0xf40fb000
Physical Address: 0xf4100000
Physical Address: 0xf4308000
Physical Address: 0xf4309000
Physical Address: 0xf430a000
Physical Address: 0xf430b000
Physical Address: 0xf430c000
Physical Address: 0xf4900000
Physical Address: 0xf4c00000
通过mdb我们找到了配置空间的初始物理地址0xf4000000,根据PCI设备的BDF,结合上述C程序就可以验证由pcitool得到的配置空间物理地址了。至于为什么该地址保存在属性"ecfg"中,可以参考函数npe_query_acpi_mcfg。


Solaris在SPARC平台下没有scanpci和lspci等相应的命令,prtconf是一个可以得到系统配置信息的命令,当然也包括PCI设备。
# prtconf -vp
...
        Node 0xf00d1b0c
            assigned-addresses:  83001810.00000000.00100000.00000000.00020000.83001818.00000000.00140000.00000000.00040000.81001820.00000000.00000940.0000000
0.00000040.82001830.00000000.00180000.00000000.00040000
            reg:  00001800.00000000.00000000.00000000.00000000.03001810.00000000.00000000.00000000.00020000.03001818.00000000.00000000.00000000.00040000.0100
1820.00000000.00000000.00000000.00000040.02001830.00000000.00000000.00000000.00040000
            compatible: 'pci8086,1026.8086.1001.4' + 'pci8086,1026.8086.1001' + 'pci8086,1001' + 'pci8086,1026.4' + 'pci8086,1026' + 'pciclass,020000' + 'pciclass,0200'
            name:  'ethernet'
            66mhz-capable:  
            devsel-speed:  00000001
            class-code:  00020000
            interrupts:  00000001
            latency-timer:  00000040
            cache-line-size:  00000010
            max-latency:  00000000
            min-grant:  000000ff
            subsystem-id:  00001001
            subsystem-vendor-id:  00008086
            revision-id:  00000004
            device-id:  00001026
            vendor-id:  00008086
...
其中reg属性中包含了什么信息可以从pci(4) man page中得到,也可以通过下面的C程序得到。

#include

/*

                   Bits 0 - 7           8-bit register number
                   Bits 8 - 10          3-bit function number
                   Bits 11 - 15         5-bit device number
                   Bits 16 - 23         8-bit bus number
                   Bits 24 - 25         2-bit address space type identifier
                   Bits 28 - 31         Register number extended bits  8:11
                                        for extended config space. Zero for
                                        conventional configuration space.

                   The  address  space  type  identifier  can  be
                   interpreted as follows:

                   0x0                  configuration space
                   0x1                  I/O space
                   0x2                  32-bit memory space address
                   0x3                  64-bit memory space address

*/

#define REG 0x000000ff
#define FUN 0x00000700
#define DEV 0x0000f800
#define BUS 0x00ff0000
#define ADD 0x03000000
#define EXT 0xf0000000

int main(int argc, char *argv[])
{
    int i, regs[]={
/*
            0x0200c810,
            0x8200c814,
            0x8100c818,
            0x0000c800,
            0x0200c810,
            0x0200c814,
            0x0100c818,
            0,
            0x83001110,
            0x83001010,
            0,
            0x83001810,
*/
            0x00001800,
            0x03001810,
            0x03001818,
            0x01001820,
            0x02001830,
            1 };

    for(i=0; regs[i] != 1; i++) {
        if (regs[i] == 0) {
            printf("\n");
            continue;
        }
        printf("REG: %x\t", regs[i] & REG);
        printf("FUN: %x\t", (regs[i] & FUN) >> 8);
        printf("DEV: %x\t", (regs[i] & DEV) >> 11);
        printf("BUS: %x\t", (regs[i] & BUS) >> 16);
        printf("ADD: %x\t", (regs[i] & ADD) >> 24);
        printf("EXT: %x\n", (regs[i] & EXT) >> 28);
    }

    return 0;
}
# ./reg
REG: 0    FUN: 0    DEV: 3    BUS: 0    ADD: 0    EXT: 0
REG: 10    FUN: 0    DEV: 3    BUS: 0    ADD: 3    EXT: 0
REG: 18    FUN: 0    DEV: 3    BUS: 0    ADD: 3    EXT: 0
REG: 20    FUN: 0    DEV: 3    BUS: 0    ADD: 1    EXT: 0
REG: 30    FUN: 0    DEV: 3    BUS: 0    ADD: 2    EXT: 0

最近发现了一个可以解析prtconf输出的工具,非常好用:
http://blogs.sun.com/dmick/entry/prtpci_digest_and_display_prtconf


阅读(7485) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~