Chinaunix首页 | 论坛 | 博客
  • 博客访问: 879291
  • 博文数量: 254
  • 博客积分: 5350
  • 博客等级: 大校
  • 技术积分: 2045
  • 用 户 组: 普通用户
  • 注册时间: 2008-06-27 13:27
文章分类

全部博文(254)

文章存档

2015年(1)

2014年(9)

2013年(17)

2012年(30)

2011年(150)

2010年(17)

2009年(28)

2008年(2)

分类: C/C++

2011-12-23 10:05:35

#pragma pack(push,1) (pop)

分解为:
#pragma pack(push)  //保存默认对齐状态
#pragma (1)                  //按1对齐
.......
#pragma(pop)              //恢复对齐状态

本文主要包括二个部分,第一部分重点介绍在VC中,怎么样采用sizeof来求结构的大小,以及容易出现的问题,并给出解决问题的方法,第二部分总结出VC中sizeof的主要用法。

1、 sizeof应用在结构上的情况

请看下面的结构:

struct MyStruct

{

double dda1;

char dda;

int type

};

对结构MyStruct采用sizeof会出现什么结果呢?sizeof(MyStruct)为多少呢?也许你会这样求:

sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13

但是当在VC中测试上面结构的大小时,你会发现sizeof(MyStruct)为16。你知道为什么在VC中会得出这样一个结果吗?

其实,这是VC对变量存储的一个特殊处理。为了提高CPU的存储速度,VC对一些变量的起始地 址做了“对齐”处理。在默认情况下,VC规定各成员变量存放的起始地址相对于结构的起始地址的偏移量必须为该变量的类型所占用的字节数的倍数。下面列出常 用类型的对齐方式(vc6.0,32位系统)。

类型
对齐方式(变量存放的起始地址相对于结构的起始地址的偏移量)

Char
偏移量必须为sizeof(char)即1的倍数

int
偏移量必须为sizeof(int)即4的倍数

float
偏移量必须为sizeof(float)即4的倍数

double
偏移量必须为sizeof(double)即8的倍数

Short
偏移量必须为sizeof(short)即2的倍数

各成员变量在存放的时候根据在结构中出现的顺序依次申请空间,同时按照上面的对齐方式调整位 置,空缺的字节VC会自动填充。同时VC为了确保结构的大小为结构的字节边界数(即该结构中占用最大空间的类型所占用的字节数)的倍数,所以在为最后一个 成员变量申请空间后,还会根据需要自动填充空缺的字节。

下面用前面的例子来说明VC到底怎么样来存放结构的。

struct MyStruct

{

double dda1;

char dda;

int type

};

为上面的结构分配空间的时候,VC根据成员变量出现的顺序和对齐方式,先为第一个成员dda1 分配空间,其起始地址跟结构的起始地址相同(刚好偏移量0刚好为sizeof(double)的倍数),该成员变量占用sizeof(double)=8 个字节;接下来为第二个成员dda分配空间,这时下一个可以分配的地址对于结构的起始地址的偏移量为8,是sizeof(char)的倍数,所以把dda 存放在偏移量为8的地方满足对齐方式,该成员变量占用sizeof(char)=1个字节;接下来为第三个成员type分配空间,这时下一个可以分配的地 址对于结构的起始地址的偏移量为9,不是sizeof(int)=4的倍数,为了满足对齐方式对偏移量的约束问题,VC自动填充3个字节(这三个字节没有 放什么东西),这时下一个可以分配的地址对于结构的起始地址的偏移量为12,刚好是sizeof(int)=4的倍数,所以把type存放在偏移量为12 的地方,该成员变量占用sizeof(int)=4个字节;这时整个结构的成员变量已经都分配了空间,总的占用的空间大小为:8+1+3+4=16,刚好 为结构的字节边界数(即结构中占用最大空间的类型所占用的字节数sizeof(double)=8)的倍数,所以没有空缺的字节需要填充。所以整个结构的 大小为:sizeof(MyStruct)=8+1+3+4=16,其中有3个字节是VC自动填充的,没有放任何有意义的东西。

下面再举个例子,交换一下上面的MyStruct的成员变量的位置,使它变成下面的情况:

struct MyStruct

{

char dda;

double dda1;

int type

};

这个结构占用的空间为多大呢?在VC6.0环境下,可以得到sizeof(MyStruc)为24。结合上面提到的分配空间的一些原则,分析下VC怎么样为上面的结构分配空间的。(简单说明)

struct MyStruct

{

char dda;//偏移量为0,满足对齐方式,dda占用1个字节;

double dda1;//下一个可用的地址的偏移量为1,不是sizeof(double)=8

//的倍数,需要补足7个字节才能使偏移量变为8(满足对齐

//方式),因此VC自动填充7个字节,dda1存放在偏移量为8

//的地址上,它占用8个字节。

int type;//下一个可用的地址的偏移量为16,是sizeof(int)=4的倍

//数,满足int的对齐方式,所以不需要VC自动填充,type存

//放在偏移量为16的地址上,它占用4个字节。

};//所有成员变量都分配了空间,空间总的大小为1+7+8+4=20,不是结构

//的节边界数(即结构中占用最大空间的类型所占用的字节数sizeof

//(double)=8)的倍数,所以需要填充4个字节,以满足结构的大小为

//sizeof(double)=8的倍数。

所以该结构总的大小为:sizeof(MyStruc)为1+7+8+4+4=24。其中总的有7+4=11个字节是VC自动填充的,没有放任何有意义的东西。

VC对结构的存储的特殊处理确实提高CPU存储变量的速度,但是有时候也带来了一些麻烦,我们也屏蔽掉变量默认的对齐方式,自己可以设定变量的对齐方式。

VC中提供了#pragma pack(n)来设定变量以n字节对齐方式。n字节对齐就是说变量存放的起始地址的偏移量有两种情况:第一、如果n大于等于该变量所占用的字节数,那么偏 移量必须满足默认的对齐方式,第二、如果n小于该变量的类型所占用的字节数,那么偏移量为n的倍数,不用满足默认的对齐方式。结构的总大小也有个约束条 件,分下面两种情况:如果n大于所有成员变量类型所占用的字节数,那么结构的总大小必须为占用空间最大的变量占用的空间数的倍数;

否则必须为n的倍数。下面举例说明其用法。

#pragma pack(push) //保存对齐状态

#pragma pack(4)//设定为4字节对齐

struct test

{

char m1;

double m4;

int m3;

};

#pragma pack(pop)//恢复对齐状态

以上结构的大小为16,下面分析其存储情况,首先为m1分配空间,其偏移量为0,满足我们自己 设定的对齐方式(4字节对齐),m1占用1个字节。接着开始为m4分配空间,这时其偏移量为1,需要补足3个字节,这样使偏移量满足为n=4的倍数(因为 sizeof(double)大于n),m4占用8个字节。接着为m3分配空间,这时其偏移量为12,满足为4的倍数,m3占用4个字节。这时已经为所有 成员变量分配了空间,共分配了16个字节,满足为n的倍数。如果把上面的#pragma pack(4)改为#pragma pack(16),那么我们可以得到结构的大小为24。(请读者自己分析)

2、 sizeof用法总结

在VC中,sizeof有着许多的用法,而且很容易引起一些错误。下面根据sizeof后面的参数对sizeof的用法做个总结。

A. 参数为数据类型或者为一般变量。例如sizeof(int),sizeof(long)等等。这种情况要注意的是不同系统系统或者不同编译器得到的结果可能是不同的。例如int类型在16位系统中占2个字节,在32位系统中占4个字节。

B. 参数为数组或指针。下面举例说明.

int a[50]; //sizeof(a)=4*50=200; 求数组所占的空间大小

int *a=new int[50];// sizeof(a)=4; a为一个指针,sizeof(a)是求指针

//的大小,在32位系统中,当然是占4个字节。

C. 参数为结构或类。Sizeof应用在类和结构的处理情况是相同的。但有两点需要注意,第一、结构或者类中的静态成员不对结构或者类的大小产生影响,因为静态变量的存储位置与结构或者类的实例地址无关。

第二、没有成员变量的结构或类的大小为1,因为必须保证结构或类的每一

个实例在内存中都有唯一的地址。

下面举例说明,

Class Test{int a;static double c};//sizeof(Test)=4.

Test *s;//sizeof(s)=4,s为一个指针。

Class test1{ };//sizeof(test1)=1;

D. 参数为其他。下面举例说明。

int func(char s[5]);

{

cout<
//数的参数在传递的时候系统处理为一个指针,所

//以sizeof(s)实际上为求指针的大小。

return 1;

}

sizeof(func(“1234”))=4//因为func的返回类型为int,所以相当于

//求sizeof(int).

以上为sizeof的基本用法,在实际的使用中要注意分析VC的分配变量的分配策略,这样的话可以避免一些错误。

附:pragma     预处理指令详解        
        在所有的预处理指令中,#Pragma     指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作。#pragma指令对每个编译器给出了一个方法,在保持与C和 C++语言完全兼容的情况下,给出主机或操作系统专有的特征。依据定义,编译指示是机器或操作系统专有的,且对于每个编译器都是不同的。    
其格式一般为:       #Pragma     Para    
其中Para     为参数,下面来看一些常用的参数。    
(1)message     参数。     Message     参数是我最喜欢的一个参数,它能够在编译信息输出窗    
口中输出相应的信息,这对于源代码信息的控制是非常重要的。其使用方法为:    
#Pragma     message(“消息文本”)    
  当编译器遇到这条指令时就在编译输出窗口中将消息文本打印出来。     当我们在程序中定义了许多宏来控制源代码版本的时候,我们自己有可能都会忘记有没有正确的设置这些宏,此时我们可以用这条指令在编译的时候就进行检查。假 设我们希望判断自己有没有在源代码的什么地方定义了_X86这个宏可以用下面的方法    
#ifdef     _X86    
#Pragma   message(“_X86     macro     activated!”)    
#endif    
当我们定义了_X86这个宏以后,应用程序在编译时就会在编译输出窗口里显示“_     X86     macro     activated!”。我们就不会因为不记得自己定义的一些特定的宏而抓耳挠腮了     。    
  (2)另一个使用得比较多的pragma参数是code_seg。格式如:    
#pragma   code_seg(     [ "section-name "[, "section-class "]     ]     )    
它能够设置程序中函数代码存放的代码段,当我们开发驱动程序的时候就会使用到它。    
  (3)#pragma     once     (比较常用)    
只要在头文件的最开始加入这条指令就能够保证头文件被编译一次,这条指令实际上在VC6中就已经有了,但是考虑到兼容性并没有太多的使用它。    
  (4)#pragma     hdrstop表示预编译头文件到此为止,后面的头文件不进行预编译。BCB可以预编译头文件以加快链接的速度,但如果所有头文件都进行预编译又可能占太 多磁盘空间,所以使用这个选项排除一些头文件。有时单元之间有依赖关系,比如单元A依赖单元B,所以单元B要先于单元A编译。你可以用#pragma     startup指定编译优先级,如果使用了#pragma     package(smart_init)     ,BCB就会根据优先级的大小先后编译。        
  (5)#pragma     resource     "*.dfm "表示把*.dfm文件中的资源加入工程。*.dfm中包括窗体    
外观的定义。            
(6)#pragma     warning(     disable     :     4507     34;     once     :     4385;     error     :     164     )    
                      等价于:    
#pragma     warning(disable:4507     34)         //     不显示4507和34号警告信息    
      #pragma   warning(once:4385)                                 //     4385号警告信息仅报告一次    
      #pragma     warning(error:164)                                 //     把164号警告信息作为一个错误。    
同时这个pragma     warning     也支持如下格式:    
#pragma     warning(     push     [     ,n     ]     )       #pragma     warning(     pop     )    
这里n代表一个警告等级(1---4)。    
#pragma     warning(     push     )保存所有警告信息的现有的警告状态。    
#pragma     warning(     push,     n)保存所有警告信息的现有的警告状态,并且把全局警告等级设定为n。        
#pragma     warning(     pop     )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的    
一切改动取消。例如:    
  #pragma     warning(     push     )    
#pragma     warning(     disable     :     4705     )    
#pragma     warning(     disable     :     4706     )    
#pragma     warning(     disable     :     4707     )    
#pragma     warning(     pop     )        
在这段代码的最后,重新保存所有的警告信息(包括4705,4706和4707)。    
(7)pragma     comment(...)    
该指令将一个注释记录放入一个对象文件或可执行文件中。常用的lib关键字,可以帮我们连入一个库文件。    
每个编译程序可以用#pragma指令激活或终止该编译程序支持的一些编译功能。例如,对循环优化功能:    
#pragma     loop_opt(on)                         //     激活    
#pragma     loop_opt(off)         //     终止    
有时,程序中会有些函数会使编译器发出你熟知而想忽略的警告,如“Parameter     xxx     is     never     used     in     function     xxx”,可以这样:    
#pragma     warn     —100                         //     Turn     off     the     warning     message     for     warning     #100    
int     insert_record(REC     *r)    
{     /*     function     body     */     }    
#pragma     warn     +100                                                 //     Turn     the     warning     message     for     warning     #100     back     on    
函数会产生一条有唯一特征码100的警告信息,如此可暂时终止该警告。    
每个编译器对#pragma的实现不同,在一个编译器中有效在别的编译器中几乎无效。可从编译器的文档中查看

阅读(1279) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~