Chinaunix首页 | 论坛 | 博客
  • 博客访问: 864704
  • 博文数量: 188
  • 博客积分: 4433
  • 博客等级: 上校
  • 技术积分: 1905
  • 用 户 组: 普通用户
  • 注册时间: 2008-11-14 07:14
个人简介

linux

文章分类

全部博文(188)

文章存档

2016年(6)

2015年(22)

2014年(18)

2013年(5)

2012年(125)

2011年(10)

2010年(2)

分类: LINUX

2012-03-13 10:47:14

读和写数据 - 内存页

Linux 内核将硬盘I/O 进行分页,多数Linux 系统的默认页大小为4K.读和写磁盘块进出到内存都为4K 页大小.你可以使用time 这个命令加-v 参数,来检查你系统中设置的页大小:

# /usr/bin/time -v date Page size (bytes): 4096

Major and Minor Page Faults(译注:主要页错误和次要页错误)

Linux,类似多数的UNIX 系统,使用一个虚拟内存层来映射硬件地址空间.当一个进程被启动,内核先扫描CPU caches和物理内存.如果进程需要的数据在这2个地方都没找到,就需要从磁盘上读取,此时内核过程就是major page fault(MPF).MPF 要求磁盘子系统检索页并缓存进RAM.

一旦内存页被映射进内存的buffer cache(buff)中,内核将尝试从内存中读取或写入,此时内核过程就是minor page fault(MnPF).与在磁盘上操作相比,MnPF 通过反复使用内存中的内存页就大大的缩短了内核时间.

以下的例子,使用time 命令验证了,当进程启动后,MPF 和 MnPF 的变化情况.第一次运行进程,MPF 会更多:

# /usr/bin/time -v evolution Major (requiring I/O) page faults: 163 Minor (reclaiming a frame) page faults: 5918

第二次再运行时,内核已经不需要进行MPF了,因为进程所需的数据已经在内存中:

# /usr/bin/time -v evolution Major (requiring I/O) page faults: 0 Minor (reclaiming a frame) page faults: 5581
The File Buffer Cache(译注:文件缓存区)

文件缓存区就是指,内核将MPF 过程最小化,MnPF 过程最大化.随着系统不断的产生I/O,buffer cache也将不断的增加.直到内存不够,以及系统需要释放老的内存页去给其他用户进程使用时,系统就会丢弃这些内存页.结果是,很多sa(译注:系统管理员)对系统中过少的free memory(译注:空闲内存)表示担心,实际上这是系统更高效的在使用caches.

以下例子,是查看/proc/meminfo 文件:


# cat /proc/meminfo MemTotal: 2075672 kB MemFree: 52528 kB Buffers: 24596 kB Cached: 1766844 kB

可以看出,这个系统总计有2GB (Memtotal)的可用内存.当前的空闲内存为52MB (MemFree),有24 MB内存被分配磁盘写操作(Buffers),还有1.7 GB页用于读磁盘(Cached).

内核这样是通过MnPF机制,而不代表所有的页都是来自磁盘.通过以上部分,我们不可能确认系统是否处于瓶颈中.


Type of Memory Pages

在Linux 内核中,memory pages有3种,分别是:

  1. 1,Read Pages - 这些页通过MPF 从磁盘中读入,而且是只读.这些页存在于Buffer Cache中以及包括不能够修改的静态文件,二进制文件,还有库文件.当内核需要它们时,将读取到内存中.如果内存不足,内核将释放它们回空闲列表中.程序再次请求时,则通过MPF 再次读回内存.

  2. 2,Dirty Pages - 这些页是内核在内存中已经被修改过的数据页.当这些页需要同步回磁盘上,由pdflush 负责写回磁盘.如果内存不足,kswapd (与pdflush 一起)将这些页写回到磁盘上并释放更多的内存.

  3. 3,Anonymous Pages - 这些页属于某个进程,但是没有任何磁盘文件和它们有关.他们不能和同步回磁盘.如果内存不足,kswapd 将他们写入swap 分区上并释放更多的内存(”swapping” pages).

Writing Data Pages Back to Disk

应用程序有很多选择可以写脏页回磁盘上,可通过I/O 调度器使用 fsync() 或 sync() 这样的系统函数来实现立即写回.如果应用程序没有调用以上函数,pdflush 进程会定期与磁盘进行同步.

# ps -ef | grep pdflush root 186 6 0 18:04 ? 00:00:00 [pdflush]
Calculating IO’s Per Second(译注:IOPS 的计算)

每个I/O 请求到磁盘都需要若干时间.主要是因为磁盘的盘边必须旋转,机头必须寻道.磁盘的旋转常常被称为”rotational delay”(RD),机头的移动称为”disk seek”(DS).一个I/O 请求所需的时间计算就是DS加上RD.磁盘的RD 基于设备自身RPM 单位值(译注:RPM 是Revolutions Perminute的缩写,是转/每分钟,代表了硬盘的转速).一个RD 就是一个盘片旋转的

半圆.如何计算一个10K RPM设备的RD 值呢:

  1. 10000 RPM / 60 seconds (10000/60 = 166 RPS)

  2. 转换为 166分之1 的值(1/166 = 0.006 seconds/Rotation)

  3. 单位转换为毫秒(6 MS/Rotation)

  4. 旋转半圆的时间(6/2 = 3MS) 也就是 RD

  5. 加上平均3 MS 的寻道时间 (3MS + 3MS = 6MS)

  6. 加上2MS 的延迟(6MS + 2MS = 8MS)

  7. 1000 MS / 8 MS (1000/8 = 125 IOPS)

每次应用程序产生一个I/O,在10K RPM磁盘上都要花费平均 8MS.在这个固定时间里,磁盘将尽可能且有效率在进行读写磁盘.IOPS 可以计算出大致的I/O 请求数,10K RPM 磁盘有能力提供120-150 次IOPS.评估IOPS 的效能,可用每秒读写I/O 字节数除以每秒读写IOPS 数得出.


Random vs Sequential I/O(译注:随机/顺序 I/O)

per I/O产生的KB 字节数是与系统本身workload相关的,有2种不同workload的类型,它们是sequential和random.

4.2.2.1. Sequential I/O(译注:顺序IO)

iostat 命令提供信息包括IOPS 和每个I/O 数据处理的总额.可使用iostat -x 查看.顺序的workload是同时读顺序请求大量的数据.这包括的应用,比如有商业数据库(database)在执行大量的查询和流媒体服务.在这个workload 中,KB per I/O 的比率应该是很高的.Sequential workload 是可以同时很快的移动大量数据.如果每个I/O 都节省了时间,那就意味了能带来更多的数据处理.

# iostat -x 1 avg-cpu: %user %nice %sys %idle 0.00 0.00 57.1 4 42.86 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util /dev/sda 0.00 12891.43 0.00 105.71 0.00 1 06080.00 0.00 53040.00 1003.46 1099.43 3442.43 26.49 280.00 /dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 /dev/sda2 0.00 12857.14 0.00 5.71 0.00 105782.86 0.00 52891.43 18512.00 559.14 780.00 490.00 280.00 /dev/sda3 0.00 34.29 0.00 100.00 0.00 297.14 0.00 148.57 2.97 540.29 594.57 24.00 240.00 avg-cpu: %user %nice %sys %idle 0.00 0.00 23.53 76.47 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util /dev/sda 0.00 17320.59 0.00 102.94 0.00 142305.88 0.00 71152.94 1382.40 6975.29 952.29 28.57 294.12 /dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 /dev/sda2 0.00 16844.12 0.00 102.94 0.00 138352.94 0.00 69176.47 1344.00 6809.71 952.29 28.57 294.12 /dev/sda3 0.00 476.47 0.00 0.00 0.00 952.94 0.00 1976.47 0.00 165.59 0.00 0.00 276.47

评估IOPS 的效能,可用每秒读写I/O 字节数除以每秒读写IOPS 数得出,比如:

rkB/s 除以 r/s

wkB/s 除以 w/s

53040/105 = 505KB per I/O 71152/102 = 697KB per I/O

在上面例子可看出,每次循环下,/dev/sda 的per I/O 都在增加.

4.2.2.2. Random I/O(译注:随机IO)

Random的worklaod环境下,不依赖于数据大小的多少,更多依赖的是磁盘的IOPS 数.Web和Mail 服务就是典型的Random workload.I/O 请求内容都很小.Random workload是同时每秒会有更多的请求数产生.所以,磁盘的IOPS 数是关键.

# iostat -x 1 avg-cpu: %user %nice %sys %idle 2.04 0.00 97.96 0.00 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util /dev/sda 0.00 633.67 3.06 102.31 24.49 5281.63 12.24 2640.82 288.89 73.67 113.89 27.22 50.00 /dev/sda1 0.00 5.10 0.00 2.04 0.00 57.14 0.00 28.57 28.00 1.12 55.00 55.00 11.22 /dev/sda2 0.00 628.57 3.06 100.27 24.49 5224.49 12.24 2612.24 321.50 72.55 121.25 30.63 50.00 /dev/sda3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 avg-cpu: %user %nice %sys %idle 2.15 0.00 97.85 0.00 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util /dev/sda 0.00 41.94 6.45 130.98 51.61 352.69 25.81 3176.34 19.79 2.90 286.32 7.37 15.05 /dev/sda1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 /dev/sda2 0.00 41.94 4.30 130.98 34.41 352.69 17.20 3176.34 21.18 2.90 320.00 8.24 15.05 /dev/sda3 0.00 0.00 2.15 0.00 17.20 0.00 8.60 0.00 8.00 0.00 0.00 0.00 0.00

计算方式和之前的公式一致:

2640/102 = 23KB per I/O 3176/130 = 24KB per I/O

(译注:对于顺序I/O来说,主要是考虑读取大量数据的能力即KB per request.对于随机I/O系统,更需要考虑的是IOPS值)


When Virtual Memory Kills I/O

如果系统没有足够的RAM 响应所有的请求,就会使用到SWAP device.就像使用文件系统I/O,使用SWAP device 代价也很大.如果系统已经没有物理内存可用,那就都在SWAP disk上创建很多很多的内存分页,如果同一文件系统的数据都在尝试访问SWAP device,那系统将遇到I/O 瓶颈.最终导致系统性能的全面崩溃.如果内存页不能够及时读或写磁盘,它们就一直保留在RAM中.如果保留时间太久,内核又必须释放内存空间.问题来了,I/O 操作都被阻塞住了,什么都没做就被结束了,不可避免地就出现kernel panic和system crash.

下面的vmstat 示范了一个内存不足情况下的系统:

procs ———–memory———- —swap– —–io—- –system– —-cpu—- r b swpd free buff cache si so bi bo in cs us sy id wa 17 0 1250 3248 45820 1488472 30 132 992 0 2437 7657 23 50 0 23 11 0 1376 3256 45820 1488888 57 245 416 0 2391 7173 10 90 0 0 12 0 1582 1688 45828 1490228 63 131 1348 76 2432 7315 10 90 0 10 12 2 3981 1848 45468 1489824 185 56 2300 68 2478 9149 15 12 0 73 14 2 10385 2400 44484 1489732 0 87 1112 20 2515 11620 0 12 0 88 14 2 12671 2280 43644 1488816 76 51 1812 204 2546 11407 20 45 0 35

这个结果可看出,大量的读请求回内存(bi),导致了空闲内存在不断的减少(free).这就使得系统写入swap device的块数目(so)和swap 空间(swpd)在不断增加.同时看到CPU WIO time(wa)百分比很大.这表明I/O 请求已经导致CPU 开始效率低下.

要看swaping 对磁盘的影响,可使用iostat 检查swap 分区

# iostat -x 1 avg-cpu: %user %nice %sys %idle 0.00 0.00 100.00 0.00 Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util /dev/sda 0.00 1766.67 4866.67 1700.00 38933.33 31200.00 19466.67 15600.00 10.68 6526.67 100.56 5.08 3333.33 /dev/sda1 0.00 933.33 0.00 0.00 0.00 7733.33 0.00 3866.67 0.00 20.00 2145.07 7.37 200.00 /dev/sda2 0.00 0.00 4833.33 0.00 38666.67 533.33 19333.33 266.67 8.11 373.33 8.07 6.90 87.00 /dev/sda3 0.00 833.33 33.33 1700.00 266.67 22933.33 133.33 11466.67 13.38 6133.33 358.46 11.35 1966.67

在这个例子中,swap device(/dev/sda1) 和 file system device(/dev/sda3)在互相作用于I/O. 其中任一个会有很高写请求(w/s),也会有很高wait time(await),或者较低的服务时间比率(svctm).这表明2个分区之间互有联系,互有影响.


另一篇文章
# iostat -x 1 10
Linux 2.6.18-92.el5xen    02/03/2009
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           1.10    0.00    4.82   39.54    0.07   54.46
Device:         rrqm/s   wrqm/s   r/s   w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
sda               0.00     3.50  0.40  2.50     5.60    48.00    18.48     0.00    0.97   0.97   0.28
sdb               0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sdc               0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sdd               0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sde               0.00     0.10  0.30  0.20     2.40     2.40     9.60     0.00    1.60   1.60   0.08
sdf              17.40     0.50 102.00  0.20 12095.20     5.60   118.40     0.70    6.81   2.09  21.36
sdg             232.40     1.90 379.70  0.50 76451.20    19.20   201.13     4.94   13.78   2.45  93.16
rrqm/s:   每秒进行 merge 的读操作数目。即 delta(rmerge)/s
wrqm/s:  每秒进行 merge 的写操作数目。即 delta(wmerge)/s
r/s:           每秒完成的读 I/O 设备次数。即 delta(rio)/s
w/s:         每秒完成的写 I/O 设备次数。即 delta(wio)/s
rsec/s:    每秒读扇区数。即 delta(rsect)/s
wsec/s:  每秒写扇区数。即 delta(wsect)/s
rkB/s:      每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)
wkB/s:    每秒写K字节数。是 wsect/s 的一半。(需要计算)
avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)
avgqu-sz: 平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。
await:    平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)
svctm:   平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)
%util:      一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘
可能存在瓶颈。
idle小于70% IO压力就较大了,一般读取速度有较多的wait.


同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)


另外还可以参考
一般:
svctm < await (因为同时等待的请求的等待时间被重复计算了),
svctm的大小一般和磁盘性能有关:CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。
await: await的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。
如果 svctm 比较接近 await,说明I/O 几乎没有等待时间;
如果 await 远大于 svctm,说明 I/O队列太长,应用得到的响应时间变慢
如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator算法,优化应用,或者升级 CPU
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

  别人一个不错的例子.(I/O 系统 vs. 超市排队)

举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧?除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义(不过我还没发现什么事情比排队还无聊的)。
I/O 系统也和超市排队有很多类似之处:
r/s+w/s 类似于交款人的总数
平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
平均服务时间(svctm)类似于收银员的收款速度
平均等待时间(await)类似于平均每人的等待时间
平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
I/O 操作率 (%util)类似于收款台前有人排队的时间比例。
我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。
下面是别人写的这个参数输出的分析
# iostat -x 1
avg-cpu:  %user   %nice    %sys   %idle
16.24    0.00    4.31   79.44
Device:    rrqm/s wrqm/s   r/s   w/s  rsec/s  wsec/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await  svctm  %util
/dev/cciss/c0d0
0.00  44.90  1.02 27.55    8.16  579.59     4.08   289.80    20.57    22.35   78.21   5.00  14.29
/dev/cciss/c0d0p1
0.00  44.90  1.02 27.55    8.16  579.59     4.08   289.80    20.57    22.35   78.21   5.00  14.29
/dev/cciss/c0d0p2
0.00   0.00  0.00  0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: 总IO(io)/s = r/s(读) +w/s(写) = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。
平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上 78ms,为什么? 因为发出的 I/O 请求太多 (每秒钟约 29 个),假设这些请求是同时发出的,那么平均等待时间可以这样计算:
平均等待时间 = 单个 I/O 服务时间 * ( 1 + 2 + ... + 请求总数-1) / 请求总数
应用到上面的例子: 平均等待时间 = 5ms * (1+2+...+28)/29 = 70ms,和 iostat 给出的78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。
每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个 左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。
一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。
delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s=78.21 * delta(io)/s = 78.21*28.57 =2232.8,表明每秒内的I/O请求总共需要等待2232.8ms。所以平均队列长度应为 2232.8ms/1000ms = 2.23,而iostat 给出的平均队列长度 (avgqu-sz) 却为 22.35,为什么?! 因为 iostat 中有 bug,avgqu-sz值应为 2.23,而不是 22.35。

来源: 
阅读(1296) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~