GCDTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 448 Accepted Submission(s): 192
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
Sample Output
//
/*把所有的n的约数找出来,然后n = p * d,那我们现在把每一个最大公约数为d的全部找出来,怎样找呢?肯定是x = q * d,显然q得与p互质,这样才能保证n跟x的最大公约数是d,然后我们就只要把所有的d找出来就行了,然后就只要找p的质因子就行了,这不就是欧拉吗?
*/
#include
#include
using namespace std;
const int Max = 1000000005;
int num[40000],cnt2;
int Eular( int n )
{
int ret = 1;
for( int i = 2; i * i <= n; ++i )
{
int temp = i;
if( n % temp == 0 )
{
ret *= ( temp - 1 );
n /= temp;
while( n % temp == 0 )
ret *= temp,n /= temp;
}
}
if( n > 1 )
ret *= ( n - 1 );
return ret;
}
int main( )
{
int i,Cas;
scanf( "%d",&Cas );
while( Cas-- )
{
int n,m;
scanf( "%d%d",&n,&m );
cnt2 = 0;
for(i = 1; i * i <= n; ++i )
if( n % i == 0 )
{
num[cnt2++] = i;
if( i * i < n )
num[cnt2++] = n / i;
}
int s = 0;
for(i = 0; i < cnt2; ++i )
if( num[i] >= m )
s += Eular( n / num[i] );
printf( "%d\n",s );
}
return 0;
}
下面是我独立的解法,采用容斥原理,重写原来的代码
/* 以10000 72为例,我们求出10000的因子为80,100,125, 这些因子恰好大于72并且互相不能整除。再使用容斥10000/80+10000/100+10000/125-10000/lcm(80,100)-10000/lcm(80,125)-10000/lcm(100,125)+10000/lcm(80,100,125)
=125+100+80-25-5-20+5=260
*/
#include
#include
#include
using namespace std;
struct fac{
int pri; //质数
int po; //质数的幂
fac(int pr, int p):pri(pr),po(p){}
};
vector fa;
vector g;
int N,M;
int gcd(int a, int b)
{
return b==0?a:gcd(b,a%b);
}
//最小公倍数
int lcm(int a, int b)
{
return a/gcd(a, b)*b;
}
//求N的因子,要求大于M,可能有整除冗余,例如以10000 72为例,生成250,100,200,80,125. 最终要剔除250和200
void dfs(int dep,int max,int val)
{
int i,t=1;
if(dep==max)
return;
for(i=0;i t*=fa[dep].pri;
if(val*t>=M){
g.push_back(val*t);
break;
}
else
dfs(dep+1,max,val*t);
}
dfs(dep+1,max,val);
}
int solve()
{
if(N==1)
return 1;
if(M==1)
return N;
int n=N;
int i,j,cnt;
//分解N, 生成质数因子和指数幂
for(i=2;i*i<=n;i++){
if(n%i==0){
cnt=0;
while(n%i==0){
n/=i;
cnt++;
}
fa.push_back(fac(i,cnt));
}
}
if(n>1) fa.push_back(fac(n,1));
//生成N的因子
dfs(0,fa.size(),1);
//for(i=0;i // printf("%d ",g[i]);
sort(g.begin(),g.end());
//过滤掉因子中冗余的
int sz=g.size();
cnt=1;
for(i=1;i for(j=0;j if(g[i]%g[j]==0)
break;
}
if(j==i)
g[cnt++]=g[i];
}
//开始利用容斥
int sum=0;
for(int num=1;num<(1< int mult=1,ones=0;
for(i=0;i if(num&(1< ones++;
mult=lcm(mult, g[i]);
}
}
if(ones%2) sum+=N/mult;
else sum-=N/mult;
}
fa.clear();
g.clear();
return sum;
}
int main( )
{
int Cas;
scanf("%d",&Cas);
while(Cas--){
scanf("%d%d",&N,&M);
printf( "%d\n",solve());
}
return 0;
}
最早的一坨,惨不忍睹
#include
#include
int prime[30000] = {2, 3, 5, 7, 11};
int prime_count = 5;
int fac[1000000];
int count;
int temp_fac[1000000];
int temp_fac_count;
struct number_factor{
int fac;
int num;
}factor[20];
int factor_count;
int n, m;
int multiples[1000000];
int set[100000];
int temp_set[100000];
int critical_point;
void product(int *set, int size)
{
int i, res = 1;
if(!size) return;
for(i = 0; i < size; i++)
res *= set[i];
if(res >= m)
temp_fac[temp_fac_count++] = res;
}
void powerset1(int i, int *set, int size)
{
int j;
if(i == critical_point)
product(set, size);
else{
int temp = 1;
powerset1(i + 1, set, size);
for(j = 1; j <= factor[i].num; j++){
temp *= factor[i].fac;
set[size] = temp;
powerset1(i + 1, set, size + 1);
}
}
}
void de_number(void)
{
int i, j, flag = 0;
int number = n;
factor_count = 0;
memset(factor, 0, sizeof(factor));
for(i = 0; i < prime_count; i++){
if(number % prime[i] == 0){
while(number % prime[i] == 0){
factor[factor_count].num++;
number /= prime[i];
}
factor[factor_count].fac = prime[i];
factor_count++;
}
if(number == 1) break;
}
if(number > 1){
factor[factor_count].fac = number;
factor[factor_count++].num++;
}
temp_fac_count = count = 0;
critical_point = 0;
for(i = 0; i < factor_count; i++){
/*
printf("%d num=%d\n", factor[i].fac, factor[i].num);
*/
if(m <= factor[i].fac){
fac[count++] = factor[i].fac;
if(critical_point == 0)
critical_point = i;
}
else{
int t;
int mult = 1;
flag = 1;
for(t = 1; t <= factor[i].num; t++){
mult *= factor[i].fac;
if(mult >= m){
fac[count++] = mult;
factor[i].num = t - 1;
break;
}
}
}
}
if(critical_point == 0)
critical_point = factor_count;
if(flag){
powerset1(0, temp_set, 0);
/*
for(i = 0; i < temp_fac_count ; i++)
printf(" temp_fac[%d]= %d\n", i, temp_fac[i]);
*/
for(i = 0; i < temp_fac_count - 1; i++){
for(j = 0; j < temp_fac_count -1 - i; j++)
{
if(temp_fac[j] > temp_fac[j + 1]){
int temp;
temp = temp_fac[j];
temp_fac[j] = temp_fac[j + 1];
temp_fac[j + 1] = temp;
}
}
}
/*
for(i = 0; i < temp_fac_count ; i++)
printf(" temp_fac[%d]= %d\n", i, temp_fac[i]);
*/
number = count;
if(temp_fac_count) fac[count++] = temp_fac[0];
for(i = 1; i < temp_fac_count; i++){
for(j = number; j < count; j++)
if(temp_fac[i] % fac[j] == 0)
break;
if(j == count)
fac[count++] = temp_fac[i];
}
}
/*
for(i = 0; i < count; i++)
printf("%d ", fac[i]);
printf("\ncount= %d\n", count);
*/
}
int gcd(int a, int b)
{
int r;
while(a % b){
r = a % b;
a = b;
b = r;
}
return b;
}
int lcm(int a, int b)
{
return a/gcd(a, b)*b;
}
/*Least Common Multiple*/
int multi_lcm(int *set, int size)
{
int i, common;
int res = 1;
common = fac[set[0]];
for(i = 1; i < size; i++)
common = lcm(common, fac[set[i]]);
return common;
}
void set_deal(int *set, int size)
{
int res = 1;
/*
for(i = 0; i < size; i++){
printf("%d ", set[i]);
}
printf("\n");
*/
if(size){
int temp;
temp = multi_lcm(set, size);
multiples[size] += n / temp;
/*
printf("common=%d size=%d %d\n\n", temp, size, n/temp);
*/
}
}
void powerset(int i, int *set, int size)
{
if(i == count)
set_deal(set, size);
else{
powerset(i + 1, set, size);
set[size++] = i;
powerset(i + 1, set, size);
}
}
void gcd_ext(int n, int m)
{
int i, temp = 1;
int total = 0;
if(m == 1){
printf("%d\n", n);
return;
}
de_number();
memset(multiples, 0, sizeof(int) * (count + 1));
powerset(0, set, 0);
for(i = 0; i < count; i++){
total += temp * multiples[i + 1];
temp = -temp;
}
printf("%d\n", total);
}
void create_prime(void)
{
int i, j;
for(i = 13; i < 31663; i += 6){
int temp = i + 4;
for(j=0; j < prime_count; j++)
if(i % prime[j] == 0)
break;
if(j == prime_count)
prime[prime_count++] = i;
for(j=0; j < prime_count; j++)
if(temp % prime[j] == 0)
break;
if(j == prime_count)
prime[prime_count++] = temp;
}
/*
for(i = 0; i < prime_count; i++)
printf("%d ", prime[i]);
printf("%d %d", prime_count, prime[prime_count - 1]);
*/
}
int main(void)
{
int i;
int num;
create_prime();
scanf("%d", &num);
for(i = 1; i <= num; i++){
scanf("%d%d", &n, &m);
gcd_ext(n, m);
}
return 0;
}
阅读(1329) | 评论(0) | 转发(0) |