Chinaunix首页 | 论坛 | 博客
  • 博客访问: 256468
  • 博文数量: 38
  • 博客积分: 4010
  • 博客等级: 上校
  • 技术积分: 592
  • 用 户 组: 普通用户
  • 注册时间: 2007-09-03 11:37
文章分类

全部博文(38)

文章存档

2011年(1)

2009年(31)

2008年(5)

2007年(1)

我的朋友

分类: C/C++

2009-06-15 21:37:20

    通常情况类似于内存池的资料比较多, 但之前开发东西在多进程/多线程混合的情况下寻求缓存解决方案时, 采用了共享内存.
    而能对共享内存进行动态再分配的库有一个称之为 libmm 的模块, 但资料很少, 没有采用它. 后来我自己从 eAccelerator (php的一个缓存扩展) 中找到一个 mm.c , 对它进行了简化和修改, 生成了一个我自己在用的 mm.c/mm.h 现在发布如下.
    其中,供有需要的参考, 但应该特别注意的是, 我这里申请的共享内存是一个匿名的内存映射, 只能共享于有亲属关系的进程中, 因而可以在内存中再直接存放指针数据, 这一点比较方便.
    而如果想用在无关系的进程之间, 那必须对代码进行修改, 支持有名的 mmap 或 IPC-shm 以及 IPC-sem 的, 并且在mmap()时指定同主进程相当的起始地址, 这个做法非常不值得推荐, mmap() 的起始捆绑地址一般应当由系统进行分配比较好.
    好了, 代码如下, 供有需要或有兴趣的参考, 内存申请是由一个线性链表来管理的, 应当能满足大部分应用了

1. mm.h

/**
Libmm replacement used by cache design of FTPHP-searchd
Some source codes cut from eAccelerator/PHP

共享内存管理, 改自 eAccelerator 中的 mm.c, 采用 sem 信号量加锁, 线程安全!
使用时包含 mm.h 这个头文件即可, 数据类型 MM 就是这块共享内存的操作句柄类型.

常用 API 介绍:
1. MM *mm_create(size_t size);
   创建 size (单位bytes) 大小的共享内存空间(此为匿名mmap, 用于父子关系之间的进程)
   成功返回 MM 指针, 失败返回 NULL

2. void mm_destroy(MM *mm);
   销毁 mm, 它同时销毁所有的信号量锁, 多进程模型中只允许一次调用, 子进程退出时
   不必调用该函数, 以免破解整个全局的 mm 结构.

3. mm_lock(MM *mm); mm_unlock(MM *mm);
   对整个 mm 进行加锁或解锁.
   注意: 在 mm_malloc 和 mm_free 内部隐蔽地调用了 mm_lock/mm_unlock, 所以务必
         不能已加锁代码段里使用 mm_malloc/mm_free, 否则会造成死锁, 应当改用
         mm_malloc_nolock/mm_free_nolock

4. mm_lock1(MM *mm); mm_unlock1(MM *mm); ... mm_lock4(MM *mm); mm_unlock4(MM *mm);
   ... 这 4 组加锁/解锁之间互不影响, 可用于各类区间操作需加锁时使用.

5. void *mm_malloc(MM *mm, size_t size);
   void mm_free(MM *mm, void *p);

   申请和释放内存, 带全局锁

6. void *mm_malloc_nolock(MM *mm, size_t size);
   void mm_malloc_free(MM *mm, void *p);
   同上, 但不上锁


罕用的 API:
1. size_t mm_size(MM *mm);
   获取 mm 在创建时的 size.

2. int mm_protect(MM *mm, int mode);
   保护 mm , 内部调用 mprotect()
   mode 值为 MM_PROT_NONE, MM_PROT_READ, MM_PROT_WRITE, MM_PROT_EXEC 的组合

3. size_t mm_maxsize(MM *mm); size_t mm_avaiable(MM *mm);
   分别返回当前能申请到的最大内存长度和当前可用内存空间余额

4. size_t mm_sizeof(MM *mm, void *p);
   如果 p 为 mm_malloc 申请的内存, 则该调用可以返回申请时的长度

$Id: mm.h,v 1.3 2009/05/12 16:01:25 hightman Exp $
*/

#ifndef __FTPHP_MM_20090527_H__
#define __FTPHP_MM_20090527_H__

#include <sys/types.h>

#ifdef __cplusplus
extern "C" {        // 该语句的深层含义看这里
#endif

#ifndef MM
#define MM void
#endif

#define MM_SEM_NUM 5
#define mm_lock(x) _mm_lock(x,0)
#define mm_unlock(x) _mm_unlock(x,0)
#define mm_lock1(x) _mm_lock(x,1)
#define mm_unlock1(x) _mm_unlock(x,1)
#define mm_lock2(x) _mm_lock(x,2)
#define mm_unlock2(x) _mm_unlock(x,2)
#define mm_lock3(x) _mm_lock(x,3)
#define mm_unlock3(x) _mm_unlock(x,3)
#define mm_lock4(x) _mm_lock(x,4)
#define mm_unlock4(x) _mm_unlock(x,4)

#define MM_PROT_NONE 1
#define MM_PROT_READ 2
#define MM_PROT_WRITE 4
#define MM_PROT_EXEC 8

MM *mm_create(size_t size);
// create mm by mmap


size_t mm_size(MM *mm);
void mm_destroy(MM *mm);
int _mm_lock(MM *mm, int num);
// lock this mm


int _mm_unlock(MM *mm, int num);
int mm_protect(MM *mm, int mode);
// protect the mm to avoid read|write?


size_t mm_available(MM *mm);
size_t mm_maxsize(MM *mm);
void *mm_malloc(MM *mm, size_t size);
void mm_free(MM *mm, void *p);
void *mm_malloc_nolock(MM *mm, size_t size);
void mm_free_nolock(MM *mm, void *p);
size_t mm_sizeof(MM *mm, void *x);

#ifdef __cplusplus
}
#endif

#endif


2. mm.c

/**
Libmm replacement used by cache design of FTPHP-searchd
Some source codes cut from eAccelerator/PHP

$Id: mm.c,v 1.3 2009/05/12 16:01:25 hightman Exp $
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include

typedef struct mm_mutex {
  int semid;
} mm_mutex;

typedef struct mm_free_bucket {
  size_t size;
  struct mm_free_bucket *next;
} mm_free_bucket;

typedef struct mm_core {
  size_t size;
  void *start;
  size_t available;
  mm_mutex *lock;
  mm_free_bucket *free_list;
} mm_core;

typedef union mm_mem_head {
  size_t size;
  double a1;
  int (*a2)(int);
  void *a3;
} mm_mem_head;

#define MM_SIZE(sz) (sizeof(mm_mem_head)+(sz))
#define PTR_TO_HEAD(p) (((mm_mem_head *)(p)) - 1)
#define HEAD_TO_PTR(p) ((void *)(((mm_mem_head *)(p)) + 1))
#define MM mm_core
#define MM_WORD mm_mem_head

#if (defined (__GNUC__) && __GNUC__ >= 2)  /* 跨平台测试*/
# define MM_PLATFORM_ALIGNMENT (__alignof__ (MM_WORD))
#else
# define MM_PLATFORM_ALIGNMENT (sizeof(MM_WORD))
#endif
#define MM_ALIGN(n) (void*)((((size_t)(n)-1) & ~(MM_PLATFORM_ALIGNMENT-1)) + MM_PLATFORM_ALIGNMENT)

#include "mm.h"

/* MM-lock implement */
static int mm_init_lock(mm_mutex *lock) {
  union semun arg;
  int n = MM_SEM_NUM;

  if ((lock->semid = semget(IPC_PRIVATE, n, IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)) < 0) {
    return 0;
  }

  arg.val = 1;
  while (n--) {
    if (semctl(lock->semid, n, SETVAL, arg) < 0) {
     semctl(lock->semid, n, IPC_RMID, 0);
    }
  }
  return 1;
}

static int mm_do_lock(mm_mutex *lock, int num) {
  struct sembuf op;
  int rc;

  op.sem_num = (unsigned short)num;
  op.sem_op = -1;
  op.sem_flg = SEM_UNDO;

  do {
    rc = semop(lock->semid, &op, 1);
  } while (rc < 0 && errno == EINTR);

  return (rc == 0);
}

static int mm_do_unlock(mm_mutex *lock, int num) {
  struct sembuf op;

  op.sem_num = (unsigned short)num;
  op.sem_op = 1;
  op.sem_flg = SEM_UNDO;
  if (!semop(lock->semid, &op, 1))
     return 1;
  return 0;
}

static void mm_destroy_lock(mm_mutex *lock) {
  int n = MM_SEM_NUM;
  while (n--) {
    semctl(lock->semid, n, IPC_RMID, 0);
  }
}

int _mm_lock(MM *mm, int num) {
  return mm_do_lock(mm->lock, num);
}

int _mm_unlock(MM *mm, int num) {
  return mm_do_unlock(mm->lock, num);
}

/* shared memory implement */
static MM *mm_create_shm(size_t size) {
  MM *p;

  p = (MM *)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
  if (p != (MM *)-1) {
    p->size = size;                
    p->start = (char *)p + sizeof(MM);
  }
  return p;
}

static void mm_destroy_shm(MM *mm) {
  if (mm != NULL && mm != (MM *)-1) {
    munmap(mm, mm->size);
  }
}

static void mm_init(MM *mm) {
  mm->start = MM_ALIGN(mm->start); /* 按mm_mem_head 大小对齐*/
  mm->lock = mm->start; /* 此处含义不是很明白*/
  mm->start = MM_ALIGN((void *)(((char *)(mm->start)) + sizeof(mm_mutex)));
  mm->available = mm->size - (((char *)(mm->start))-(char *)mm);
  mm->free_list = (mm_free_bucket *)mm->start; /* 初始情况下,共享内存是一个free bucket*/
  mm->free_list->size = mm->available;
  mm->free_list->next = NULL;
}

void *mm_malloc_nolock(MM *mm, size_t size) {
  if (size > 0) {
    mm_mem_head *x = NULL;
    size_t realsize = (size_t) MM_ALIGN(MM_SIZE(size));
        /* 从链表中寻找大小正好合适或者略大些的空闲块,找到后从空闲链表中删除它*/
    if (realsize <= mm->available) {
      /* Search for free bucket */
      mm_free_bucket *p = mm->free_list;
      mm_free_bucket *q = NULL;
      mm_free_bucket *best = NULL;
      mm_free_bucket *best_prev = NULL;
      while (p != NULL) {
        if (p->size == realsize) {
          /* Found free bucket with the same size */
          if (q == NULL) {
            mm->free_list = p->next;
            x = (mm_mem_head *)p;
          } else {
            q->next = p->next;
            x = (mm_mem_head *)p;
          }
          break;
        } else if (p->size > realsize && (best == NULL || best->size > p->size)) {
          /* Found best bucket (smallest bucket with the grater size) */
          best = p;
          best_prev = q;
        }
        q = p;
        p = p->next;
      }
      if (x == NULL && best != NULL) {
        if (best->size-realsize < sizeof(mm_free_bucket)) {
          realsize = best->size;
          x = (mm_mem_head *)best;
          if (best_prev == NULL) {
            mm->free_list = best->next;
          } else {
            best_prev->next = best->next;
          }
        } else {
          if (best_prev == NULL) {
            mm->free_list = (mm_free_bucket *)((char *)best + realsize);
            mm->free_list->size = best->size-realsize;
            mm->free_list->next = best->next;
          } else {
            best_prev->next = (mm_free_bucket *)((char *)best + realsize);
            best_prev->next->size = best->size-realsize;
            best_prev->next->next = best->next;
          }
          best->size = realsize;
          x = (mm_mem_head *)best;
        }
      }
      if (x != NULL) {
        mm->available -= realsize;
      }
    }
    if (x != NULL) {
      return HEAD_TO_PTR(x); /* 返回匹配空闲块的有效地址*/
    }
  }
  return NULL;
}

void mm_free_nolock(MM *mm, void *x) {
  if (x != NULL) {  
    if (x >= mm->start && x < (void *)((char *)mm + mm->size)) {
      mm_mem_head *p = PTR_TO_HEAD(x);
      size_t size = p->size;
      if ((char *)p+size <= (char *)mm + mm->size) {
        mm_free_bucket *b = (mm_free_bucket *)p;
        b->next = NULL;
        if (mm->free_list == NULL) { /* 按内存块的首地址大小顺序插入空闲列表*/
          mm->free_list = b;
        } else {
          mm_free_bucket *q = mm->free_list;
          mm_free_bucket *prev = NULL;
          mm_free_bucket *next = NULL;
          while (q != NULL) {
            if (b < q) {
              next = q;
              break;
            }
            prev = q;
            q = q->next;
          }
    /* 如果插入后,前后的内存块连续则合并它们*/
          if (prev != NULL && (char *)prev+prev->size == (char *)b) {
            if ((char *)next == (char *)b+size) {
              /* merging with prev and next */
              prev->size += size + next->size;
              prev->next = next->next;
            } else {
              /* merging with prev */
              prev->size += size;
            }
          } else {
            if ((char *)next == (char *)b+size) {
              /* merging with next */
              b->size += next->size;
              b->next = next->next;
            } else {
              /* don't merge */
              b->next = next;
            }
            if (prev != NULL) {
              prev->next = b;
            } else {
              mm->free_list = b;
            }
          }
        }
        mm->available += size;
      }
    }
  }
}

size_t mm_maxsize(MM *mm) {
  size_t ret = MM_SIZE(0);
  mm_free_bucket *p;

  if (!mm_lock(mm)) {
    return 0;
  }

  p = mm->free_list;
  while (p != NULL) {
    if (p->size > ret) {
      ret = p->size;
    }
    p = p->next;
  }
  mm_unlock(mm);
  return ret - MM_SIZE(0);
}

void *mm_malloc(MM *mm, size_t size) {
  void *ret;

  if (!mm_lock(mm)) {
    return NULL;
  }
  ret = mm_malloc_nolock(mm,size);
  mm_unlock(mm);
  return ret;
}

void mm_free(MM *mm, void *x) {
  mm_lock(mm);
  mm_free_nolock(mm, x);
  mm_unlock(mm);
}

MM *mm_create(size_t size) {
  MM *p;

  if (size == 0) {     /* 默认创建32MB大小的共享内存 */
    size = 32 * 1024 * 1024;
  }
  p = mm_create_shm(size);
  if (p == (MM *)-1) {
    return NULL;
  }

  mm_init(p);
  if (!mm_init_lock(p->lock)) {  /* 创建MM_SEM_NUM 个信号量,初始为1 */
    mm_destroy_shm(p);
    return NULL;
  }
  return p;
}

void mm_destroy(MM *mm) {
  if (mm != NULL) {
    mm_destroy_lock(mm->lock);
    mm_destroy_shm(mm);
  }
}

size_t mm_size(MM *mm) {
  if (mm != NULL) {
    return mm->size;
  }
  return 0;
}

size_t mm_sizeof(MM *mm, void *x) {
  mm_mem_head *p;
  size_t ret;

  if (mm == NULL || x == NULL || !mm_lock(mm)) {
    return 0;
  }
  p = PTR_TO_HEAD(x);
  ret = p->size;
  mm_unlock(mm);
  return ret;
}

size_t mm_available(MM *mm) {
  size_t available;

  if (mm != NULL && mm_lock(mm)) {
    available = mm->available;
    mm_unlock(mm);
    return available;
  }
  return 0;
}

int mm_protect(MM *mm, int mode) {
  int pmode = 0;
  if (mode & MM_PROT_NONE) {
    pmode |= PROT_NONE;
  }
  if (mode & MM_PROT_READ) {
    pmode |= PROT_READ;
  }
  if (mode & MM_PROT_WRITE) {
    pmode |= PROT_WRITE;
  }
  if (mode & MM_PROT_EXEC) {
    pmode |= PROT_EXEC;
  }
  return (mprotect(mm, mm->size, pmode) == 0);
}

 
3. 分析其实现
    该代码使用共享内存mmap来开辟和注销内存,在其具体实现中使用了单向链表来记录当前可用的内存块;并且在注销内存块时自行对连续的内存块完成合并操作。
    开辟某大小的内存块时分有锁和无锁两种方式。鉴于该实现具体使用在多进程环境下,用有锁方式更为合适。其中对为何使用5个信号一体的信号量并没有解释,看其代码貌似也没有用到信号量1、2、3、4。
    该实现并没有给出一个典型的使用实例。
    下面是我分析该实现画得一个简易的内存使用平面图。
阅读(2825) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~