Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3049370
  • 博文数量: 535
  • 博客积分: 15788
  • 博客等级: 上将
  • 技术积分: 6507
  • 用 户 组: 普通用户
  • 注册时间: 2007-03-07 09:11
文章分类

全部博文(535)

文章存档

2016年(1)

2015年(1)

2014年(10)

2013年(26)

2012年(43)

2011年(86)

2010年(76)

2009年(136)

2008年(97)

2007年(59)

分类: LINUX

2011-10-21 15:39:25

Picking the appropriate size for the tasks for your job can radically change the performance of Hadoop. Increasing the number of tasks increases the framework overhead, but increases load balancing and lowers the cost of failures. At one extreme is the 1 map/1 reduce case where nothing is distributed. The other extreme is to have 1,000,000 maps/ 1,000,000 reduces where the framework runs out of resources for the overhead.

Number of Maps

The number of maps is usually driven by the number of DFS blocks in the input files. Although that causes people to adjust their DFS block size to adjust the number of maps. The right level of parallelism for maps seems to be around 10-100 maps/node, although we have taken it up to 300 or so for very cpu-light map tasks. Task setup takes awhile, so it is best if the maps take at least a minute to execute.

Actually controlling the number of maps is subtle. The mapred.map.tasks parameter is just a hint to the InputFormat for the number of maps. The default InputFormat behavior is to split the total number of bytes into the right number of fragments. However, in the default case the DFS block size of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via mapred.min.split.size. Thus, if you expect 10TB of input data and have 128MB DFS blocks, you'll end up with 82k maps, unless your mapred.map.tasks is even larger. Ultimately the InputFormat determines the number of maps.

The number of map tasks can also be increased manually using the 's conf.setNumMapTasks(int num). This can be used to increase the number of map tasks, but will not set the number below that which Hadoop determines via splitting the input data.

Number of Reduces

The right number of reduces seems to be 0.95 or 1.75 * (nodes * mapred.tasktracker.tasks.maximum). At 0.95 all of the reduces can launch immediately and start transfering map outputs as the maps finish. At 1.75 the faster nodes will finish their first round of reduces and launch a second round of reduces doing a much better job of load balancing.

Currently the number of reduces is limited to roughly 1000 by the buffer size for the output files (io.buffer.size * 2 * numReduces << heapSize). This will be fixed at some point, but until it is it provides a pretty firm upper bound.

The number of reduces also controls the number of output files in the output directory, but usually that is not important because the next map/reduce step will split them into even smaller splits for the maps.

The number of reduce tasks can also be increased in the same way as the map tasks, via 's conf.setNumReduceTasks(int num).

阅读(1253) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~