x1,x2,...xn是n个可以自由变化的样本,互不影响。
而x1-xbar, x2-xbar,...xn-xbar是否也是n个自由变化的呢?不是……因为这n个统计量受到一个约束条件的影响
就是之和等于0。如果我们记 yi=xi-xbar,也就是说y1+y2+...yn=0,
这样我们可以任意变动其中n-1值,比如取定了y1,y2,...y(n-1),那么yn就不能任意变化,
yn=-(y1+y2+y(n-1))。
这个只是从自由变化的角度直观解释
证明S2(x)=1/(n-1)∑[xi-E(x)]2为var2(x)的无偏估计
需证明E(S2)=var2(x)
∑[xi-E(x)]2=∑[xi-1/n∑xj]2,∑条件为j=1→n
=1/n2∑[(n-1)xi-∑xj]2,∑条件为j=1→n且j≠i
=1/n2∑[(n-1)2xi2-2(n-1)∑(xi xj)+ ∑xj2+2∑xj xz],∑条件为j=1→n,z=1→n,且j≠z≠i
E∑[xi-E(x)]2=1/n2∑[(n-1)2 E(xi2)-2(n-1)∑E (xixj)+ ∑E (xj2)+2∑E(xjxz)],
知抽样样本相互独立E (xixj)=E(xi)E(xj),且var(x)= E(x2)- E(x)2,且∑有n项,∑有n项,∑有n-1项,
∑有(n-1)(n-2)/2项
E∑[x-E(x)]2=1/n2∑[(n-1)2E(xi2)-2(n-1)(n-1)E(x)2+(n-1)E(xj2)+(n-1)(n-2)E(x)2],
=1/n2∑[(n-1)2 var2(x)+ (n-1) var2(x)],
=1/n2 * n *[(n-1)2 var2(x)+ (n-1) var2(x)]
=(n-1) var2(x)
所以E(S2)=var2(x)
自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的数据的个数称为
该统计量的自由度。如果E(x)为一常数u,那么 var2(x)=1/n∑(x-u)2 。抽样样本方差估计中
E(x)由样本本身确定。当平均数的值和其中n-1个数据的值已知时,另一个数据的值就不能自由
变化了,因此样本方差无偏估计的自由度为n-1。
阅读(7413) | 评论(0) | 转发(0) |