Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。
HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的
分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
-
中文名
-
HBase
-
来 源
-
Fay Chang 所撰写的“Bigtable
-
结 构
-
分布式存储系统
-
系 统
-
Google
结构介绍
HBase – Hadoop Database,是一个高
可靠性、高性能、面向列、可伸缩的
分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模
结构化
存储集群。
与FUJITSU Cliq等商用大数据产品不同,HBase是Google Bigtable的开源实现,
类似Google Bigtable利用GFS作为其文件
存储系统,HBase利用Hadoop HDFS作为其
文件存储
系统;Google运行MapReduce来处理Bigtable中的海量
数据,HBase同样利用Hadoop MapReduce来处理HBase中的
海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。[1]
上图描述Hadoop EcoSystem中的各层系统。其中,HBase位于结构化
存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。
此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得
传统数据库数据向HBase中迁移变的非常方便。
模型
主要讨论逻辑模型和物理模型
(1)逻辑模型
Hbase的名字的来源是Hadoop database,即
hadoop数据库。
主要是从用户角度来考虑,即如何使用Hbase。
(2)物理模型
主要从实现Hbase的角度来讨论
访问接口
1. Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行
批处理HBase表数据
2. HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用
3. Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据
4. REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制
5. Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计
6. Hive,当前Hive的
Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase
HBase数据模型Table & Column Family
Row Key
|
Timestamp
|
Column Family
|
|
URI
|
Parser
|
|
|
r1
|
t3
|
url=http://
|
title=
|
t2
|
host=com
|
|
|
t1
|
|
|
|
r2
|
t5
|
url=http://
|
content=每天…
|
t4
|
host=com
|
|
|
Ø Row Key: 行键,Table的主键,Table中的记录默认按照Row Key升序排序
Ø Timestamp:
时间戳,每次数据操作对应的时间戳,可以看作是数据的version number
Ø Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。
Table & Region
当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:
-ROOT- && .META. Table
HBase中有两张特殊的Table,-ROOT-和.META.
.META.:记录了用户表的Region信息,.META.可以有多个regoin
-ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region
Ø Zookeeper中记录了-ROOT-表的location
Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。
MapReduce on HBase
在HBase系统上运行
批处理运算,最方便和实用的模型依然是MapReduce,如下图:
HBase Table和Region的关系,比较类似HDFS File和Block的关系,HBase提供了配套的TableInputFormat和TableOutputFormat API,可以方便的将HBase Table作为Hadoop MapReduce的Source和Sink,对于MapReduce Job应用开发人员来说,基本不需要关注HBase系统自身的细节。
HBase系统架构
Client
HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC
1 Zookeeper
Zookeeper Quorum中除了
存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的单点问题,见下文描述
HMaster
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:
1. 管理用户对Table的增、删、改、查操作
2. 管理HRegionServer的负载均衡,调整Region分布
3. 在Region Split后,负责新Region的分配
4. 在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移
HRegionServer
HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。
HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的
存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。
HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:
在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在
分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog
文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成
数据恢复。
存储格式
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:
1. HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
2. HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File
HFile
下图是HFile的存储格式:
首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer中有
指针指向其他
数据块的起始点。File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。Data Index和Meta Index块记录了每个Data块和Meta块的起始点。
Data Block是HBase I/O的
基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。后面会详细介绍每个KeyValue对的内部构造。
HFile里面的每个KeyValue对就是一个简单的byte
数组。但是这个byte
数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:
开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。
HLogFile
上图中示意了HLog文件的结构,其实HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。
kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。
kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
-
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
-
高吞吐量:即使是非常普通的硬件kafka也可以支持每秒数十万的消息。
-
支持通过kafka服务器和消费机集群来分区消息。
-
支持Hadoop并行数据加载。
/>
流式大数据处理的三种框架:Storm,Spark和Samza
-
/>
使用Storm实现实时大数据分析!