Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2086820
  • 博文数量: 909
  • 博客积分: 4000
  • 博客等级: 上校
  • 技术积分: 12260
  • 用 户 组: 普通用户
  • 注册时间: 2008-05-06 20:50
文章分类

全部博文(909)

文章存档

2008年(909)

我的朋友

分类:

2008-05-06 22:47:28

一起学习
探讨性能测试中的计时问题

作者:龚 勋

下载源代码

摘要:本文结合作者在代码性能测试工作中的经验,介绍一组自己封装的的计时函数。使用该组函数可以简化测试工作,从而把更多的精力放在主要工作上,不需要过多地维护计时代码,仅仅使用两个宏就可以方便、精确地实现多个模块、多方式的时间性能测试,并且计时结果以一个文本文件独立保存,清晰直观。

关键字:精确计时;性能测试;

在系统测试时,尤其在需要测试算法或者某些模块的运行时间时,往往需要调用一些时间函数库(如VC中的timeGetTime等可以获取毫秒级的时间),在待测试的模块前后分别测试时间,然后,计算前后两个时间的差值,就得到模块的运行时间,如图 1。



图 1 一个典型的模块计时方法

但是,使用原始的计时函数直接进行时间测试在很多复杂情况下不方便,如图 1,当在一个模块中有多个子模块需要分别计时,所编写的计时代码甚至比原有的代码还多,这增加了程序维护和阅读的难度,容易出错。作者结合自己在相关工作中的经验,封装了一组计时函数,共享给大家。该组函数有如下几个优点:

  • 计时精确:封装的是高精度的计时API函数QueryPerformanceCounter(),该函数根据硬件定时器的频率,理论上可以得到微秒(us)级精度的计时结果;
  • 使用简单:只用在待测试的模块前后加上两个宏BM_START和BM_END,不需要对结果进行计算,也不需要考虑对各个模块测试结果数据的维护,这些操作已经被封装。
  • 结果输出独立:在系统运行结果时,只需要调用一个函数就可以把计时结果保存在一个文本文件里,如图 5和图 8所示。

1. 高精度计时函数
在Windows系统下,程序员通常可以使用多种方式来进行时间控制:如使用前文提到的timeGetTime()函数,或者使用GetTickCount()函数,又或实现WM_TIMER消息的映射等等。但是这些方法得到的时间精度都有一定的局限性,为了增加下文将到介绍的计时函数库的适用性,本文采用高精度的时控API函数QueryPerformanceCounter()。

计时之前,调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率,然后在需要计时的模块前后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差获得时钟频率,计算出模块的运行时间。代码如图 2:

图 2 精确计时代码段

2. 封装计时函数
2.1. 数据结构
为了维护计时结果,我们定义如下几个数据:

#define BENCHMARK_MAX_COUNT 20



double gStarts[BENCHMARK_MAX_COUNT];



double gEnds[BENCHMARK_MAX_COUNT];



double gCounters[BENCHMARK_MAX_COUNT];



double dfFreq = 1;


其中,BENCHMARK_MAX_COUNT定义了需要计时的模块总数,20表示最多可以定时20个模块,该值可以根据具体应用而定。gStarts和gEnds分别用于保存开始计时和终止计时的计数器的值,gCounters用来保存计时结果。全局变量dfFreq用来保存上文介绍的时钟频率,如图 2所示。

2.2. 初始化InitBenchmark()
初始化函数InitBenchmark()包括两部分内容:

  • 对数组gStarts, gEnds, gCounter清零;
  • 获得机器内部定时器时钟频率。
InitBenchmark()代码如下所示:

void InitBenchmark()

{

         ResetBenchmarkCounters();

         GetClockFrequent();

}

该函数一般在程序运行最初调用。

2.3. 开始计时BMTimerStart()
开始计时函数BMTimerStart()放在计时模块的开始,函数定义如下:

void BMTimerStart(int iModel)

{

         LARGE_INTEGER litmp;

         QueryPerformanceCounter(&litmp);

         gStarts[iModel] = litmp.QuadPart;

}
其中参数iModel表示当前计时的模块序号,0<=iModel<=BENCHMARK_MAX_COUNT;为了简化调用代码,我们给出一个宏定义如下:
#define BM_START(t)                  BMTimerStart(t);
2.4. 终止计时BMTimerEnd()
终止计时函数BMTimerEnd()放在计时模块的结束,函数定义如下:
void BMTimerEnd(int iModel)

{       

         LARGE_INTEGER litmp;

         QueryPerformanceCounter(&litmp);

         gEnds[iModel] = litmp.QuadPart;

         gCounters[iModel]  = (((gEnds[iModel] - gStarts[iModel]) / dfFreq) * 1000000);

}

参数iModel同BMTimerStart()。本函数首先获取当前的时钟数,然后除以dfFreq得到运行时间。对于最后一条语句:

gCounters[iModel] = (((gEnds[iModel] - gStarts[iModel]) / dfFreq) * 1000000);

要注意两点:

  • 用“+=”而不是“=”,这个看似简单的代替,可以实现对同一个模块的重复计时,后文3.3节列举的情况;
  • 乘以1000000,表示计时单位为微秒(us)。

类似BMTimerStart(),同样为BMTimerEnd()定义一个宏:

#define BM_END(t)             BMTimerEnd(t);

2.5. 结果输出WriteData()
以一个文本文件(见图 5和图 8)把全局变量gCounters中的所有值输出,该函数一般在程序结束处调用,如图 4中最后一行代码所示。由于篇幅限制,具体实现代码请参考源程序。

3. 计时测试实例
3.1. 多个模块计时
图 3展示了嵌套计时以及对一个函数中多个模块进行计时的代码,图中可以看到,利用输入参数我们对计时模块进行统一编号,测试代码相对图 1更清晰、直观。


图 3 用我们的函数实现嵌套计时

3.2. 循环内部计时
图 4中的代码展示了我们对循环体内每次执行运算的计时,只需简单地给出参数 就可以得到从1到20的阶乘的每次计算计算时间,计时结果输出为文件“D:\log.txt”,如图 5。


图 4 对循环中每次运算的计时



图 5 计时结果1

3.3. 循环累加计时
从图 5可以看到,由于现代计算机处理速度越来越快,一些简单运算的模块,微秒的计时单位几乎都不够精确,因此,一种常用的测试方法就是对同一模块进行N (N 取1000,10000等)次重复执行。使用本文介绍的计时函数,我们可以采用两种方式对这种情况进行测试,代码分别如图 6和图 7,请注意二者的区别,并请读者分析为何图 7中的方法也是可行的。 N次运算计时结果如图 8。


图 6 累加计时1

图 7 累加计时2



图 8 计时结果2

4. 结束语
本文实现了一组计时函数的封装,并给出几种特殊情况下的测试实例,实验表明该组函数可以满足各种复杂情况下的计时,能够很方便地应用的实际的测试工作中。当然,还可以进一步封装成一个计时类,留给读者们自己去做。

下载本文示例代码


探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题探讨性能测试中的计时问题
阅读(1483) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~