分类: LINUX
2010-10-25 13:35:53
一、inode的定义
inode译成中文就是索引节点,它用来存放档案及目录的基本信息,包含时间、档名、使用者及群组等。
二、inode的分类及其具体涵义
inode分为内存中的inode和文件系统中的inode,为了避免混淆,我们称前者为 VFS inode, 而后者以EXT2为代表,我们称为Ext2 inode。下面分别对VFS inodee与Ext2 inode做一下简单的描述:
1、VFS inode包含文件访问权限、属主、组、大小、生成时间、访问时间、最后修改时间等信息。它是管理文件系统的最基本单位,也是文件系统连接任何子目录、文件的桥梁。inode结构中的静态信息取自物理设备上的文件系统,由文件系统指定的函数填写,它只存在于内存中,可以通过inode缓存访问。虽然每个文件都有相应的inode结点,但是只有在需要的时候系统才会在内存中为其建立相应的inode数据结构,建立的inode结构将形成一个链表,我们可以通过遍历这个链表去得到我们需要的文件结点,VFS也为已分配的inode构造缓存和哈希表,以提 高系统性能。inode结构中的struct inode_operations *i_op为我们提供了一个inode操作列表,通过这个列表提供的函数我们可以对VFS inode结点进行各种操作。每个inode结构都有一个i结点号i_ino,在同一个文件系统中每个i结点号是唯一的。
struct inode {
struct list_headi_hash;
struct list_headi_list;
struct list_headi_dentry;
struct list_headi_dirty_buffers;
unsigned longi_ino; /*每一个inode都有一个序号,经由super block结构和其序号,我们可以很轻易的找到这个inode。*/
atomic_t i_count; /*在Kernel里,很多的结构都会记录其reference count,以确保如果某个结构正在使用,它不会被不小心释放掉,i_count就是其reference count。*/
kdev_t i_dev; /* inode所在的device代码 */
umode_t i_mode; /* inode的权限 */
nlink_t i_nlink; /* hard link的个数 */
uid_t i_uid; /* inode拥有者的id */
gid_t i_gid; /* inode所属的群组id */
kdev_t i_rdev; /* 如果inode代表的是device的话,那此字段将记录device的代码 */
off_t i_size; /* inode所代表的档案大小 */
time_t i_atime; /* inode最近一次的存取时间 */
time_t i_mtime; /* inode最近一次的修改时间 */
time_t i_ctime; /* inode的产生时间 */
unsigned long i_blksize; /* inode在做IO时的区块大小 */
unsigned long i_blocks; /* inode所使用的block数,一个block为512 byte*/
unsigned long i_version; /* 版本号码 */
unsigned short i_bytes;
struct semaphore i_sem;
struct rw_semaphore i_truncate_sem;
struct semaphore i_zombie;
struct inode_operations *i_op;
struct file_operations *i_fop;/* former ->i_op->default_file_ops */
struct super_block *i_sb; /* inode所属档案系统的super block */
wait_queue_head_t i_wait;
struct file_lock *i_flock; /* 用来做file lock */
struct address_space *i_mapping;
struct address_space i_data;
struct dquot *i_dquot [MAXQUOTAS];
/* These three should probably be a union */
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct char_device *i_cdev;
unsigned longi_dnotify_mask; /* Directory notify events */
struct dnotify_struct *i_dnotify; /* for directory notifications */
unsigned long i_state; /* inode目前的状态,可以是I_DIRTY,I_LOCK和 I_FREEING的OR组合 */
unsigned int i_flags; /* 记录此inode的参数 */
unsigned char i_sock; /* 用来记录此inode是否为socket */
atomic_t i_write count;
unsigned int i_attr_flags; /* 用来记录此inode的属性参数 */
__u32 i_generation;
union {
struct minix_inode_info minix_i;
struct ext2_inode_info ext2_i;
struct ext3_inode_info ext3_i;
struct hpfs_inode_info hpfs_i;
struct ntfs_inode_info ntfs_i;
struct msdos_inode_info msdos_i;
struct umsdos_inode_info umsdos_i;
struct iso_inode_info isofs_i;
struct sysv_inode_info sysv_i;
struct affs_inode_info affs_i;
struct ufs_inode_info ufs_i;
struct efs_inode_info efs_i;
struct romfs_inode_info romfs_i;
struct shmem_inode_info shmem_i;
struct coda_inode_info coda_i;
struct smb_inode_info smbfs_i;
struct hfs_inode_info hfs_i;
struct adfs_inode_info adfs_i;
struct qnx4_inode_info qnx4_i;
struct reiserfs_inode_info reiserfs_i;
struct bfs_inode_info bfs_i;
struct udf_inode_info udf_i;
struct ncp_inode_info ncpfs_i;
struct proc_inode_info proc_i;
struct socketsocket_i;
struct usbdev_inode_info usbdev_i;
struct jffs2_inode_infojffs2_i;
void *generic_ip;
} u;
};
2、EXT2 inode用来定义文件系统的结构以及描述系统中每个文件的管理信息,每个文件都有且只有一个inode,即使文件中没有数据,其索引结点也是存在的。每个文件用一个单独的Ext2 inode结构来描述,而且每一个inode都有唯一的标志号。Ext2 inode为内存中的inode结构提供了文件的基本信息,随着内存中inode结构的变化,系统也将更新Ext2 inode中相应的内容。Ext2 inode对应的是Ext2_inode结构。
struct ext2_inode {
__u16 i_mode;/* File mode */
__u16 i_uid;/* Low 16 bits of Owner Uid */
__u32 i_size;/* Size in bytes */
__u32 i_atime;/* Access time */
__u32 i_ctime;/* Creation time */
__u32 i_mtime;/* Modification time */
__u32 i_dtime;/* Deletion Time */
__u16 i_gid;/* Low 16 bits of Group Id */
__u16 i_links_count;/* Links count */
__u32 i_blocks;/* Blocks count */
__u32 i_flags;/* File flags */
union {
struct {
__u32 l_i_reserved1;
} linux1;
struct {
__u32 h_i_translator;
} hurd1;
struct {
__u32 m_i_reserved1;
} masix1;
} osd1;/* OS dependent 1 */
__u32 i_block[EXT2_N_BLOCKS];/* Pointers to blocks */
__u32 i_generation;/* File version (for NFS) */
__u32 i_file_acl;/* File ACL */
__u32 i_dir_acl;/* Directory ACL */
__u32 i_faddr;/* Fragment address */
union {
struct {
__u8l_ i_frag;/* Fragment number */
__u8l_ i_fsize;/* Fragment size */
__u16 i_pad1;
__u16l_ i_uid_high;/* these 2 fields */
__u16l_ i_gid_high;/* were reserved2[0] */
__u32l_ i_reserved2;
} linux2;
struct {
__u8h_ i_frag;/* Fragment number */
__u8h_ i_fsize;/* Fragment size */
__u16h_ i_mode_high;
__u16h_ i_uid_high;
__u16h_ i_gid_high;
__u32h_ i_author;
} hurd2;
struct {
__u8m_ i_frag;/* Fragment number */
__u8m_ i_fsize;/* Fragment size */
__u16m_ pad1;
__u32m_ i_reserved2[2];
} masix2;
} osd2;/* OS dependent 2 */
};
从结构的定义中可以看出来inode(VFS inode)与ext2_inode的差别是很大的,它们都包含动态信息和静态信息,通过union指定的内容一定是动态的。inode结构中的 union u实际上反映了VFS支持的文件系统。
可以看出inode结构与ext2_inode结构有些内容是相似的,如:
inode定义的
unsigned long i_ino;
umode_t i_mode;
nlink_t i_nlink;
uid_t i_uid;
gid_t i_gid;
loff_t i_size;
time_t i_atime;
time_t i_mtime;
time_t i_ctime;
unsigned long i_blksize;
unsigned long i_blocks;
和ext2_inode定义的定义部分
__u16 i_mode;/* File mode */
__u16 i_uid;/* Low 16 bits of Owner Uid */
__u32 i_size;/* Size in bytes */
__u32 i_atime;/* Access time */
__u32 i_ctime;/* Creation time */
__u32 i_mtime;/* Modification time */
__u32 i_dtime;/* Deletion Time */
__u16 i_gid;/* Low 16 bits of Group Id */
__u16 i_links_count;/* Links count */
__u32 i_blocks;/* Blocks count */
__u32 i_flags;/* File flags */
这些都可以对应上,当然还有一些不同的地方,如inode中定义的
kdev_t i_rdev;
kdev_t i_dev;
unsigned short i_bytes;
struct semaphore i_sem;
在ext2_inode中没有体现,不过这部分对ext2_inode是没有用途而且无法确定的。类似的,可以推广到两个结构的其余部分,最终在代码中的区别还是与原理中分析的区别相关的,也是原理的具体体现。
3、从上面的描述,我们可以对VFS inode与ext2 inode做出比较:
位置:VFS inode结构位于内存中,而Ext2_inode位于磁盘。
生存期:VFS inode在需要时才会被建立,如果系统断电,此结构也随之消失。
Ext2_inode的存在与系统是否上电无关,而且无论文件是否包含数据,Ext2_inode都是存在的。
唯一性:两者在自己的作用域中都是唯一的。
关系:VFS inode是Ext2 inode的抽象、映射与扩充,而后者是前者的静态信息部分,也是对前者的具体化、实例化和持久化。
操作:对VFS inode的操作具有通用性,对文件系统inode的操作则是文件系统相关的,依赖于特定的实现。
组织管理:系统通过VFS inode链表来对其进行组织,并且为了提高访问效率相应地构造了inode构造缓存和hash table。
Ext2 inode的信息位于EXT2文件系统的划分的块组中,在每个块组中包含相应的inode位图、inode表指定具体的inode信息,每个inode对应Ext2_inode结构。
三、 inode的分配 (对于ext2 inode)
1、每个inode的大小为128个字节,下面具体介绍哪几个字节代表什么内容。
0~1 表示文件的类型和属性(2 bytes)0x41ed (rwxr-xr-x) 0x8180 (-rw-------)
2~3 表示文件的长度(2 bytes)
4~7 表示文件宿主用户id(4 bytes)
8~19 表示三个时间属性,每4个字节代表一个时间,分别是atime,ctime,mtime(12B)
20~23 表示Deletion Time 即删除的时间。
24~25 表示用户组id (2 bytes)
26~27 表示硬链接的个数。
28~31 表示Blockcount 的大小
32~39 暂不清楚??
40~99 这60个字节就是inode中的15个指针,每个指针占4个字节。
100~103 暂不清楚??
104~107 表示文件访问控制表号(File ACL)
108~111 表示(Directory ACL)
112~127 暂不清楚??
2、在分割扇区时,系统会先做出一堆inode以供以后使用,inode 的数量关系着系统中可以建立的档案及目录总数。有时候,这些inode或许会不够用,例如当一个程序产生大量小文件的时候,此时文件系统就需要增加索引节点。
同样,如果我们事先知道此文件系统只用来存放少数大文件,我们就可以通过减少索引节点的数目来达到节省磁盘空间的目的——毕竟每个索引节点占用128字节。
创建文件系统的时候,可以使用newfs命令的-i选项来增加或者减少索引节点的数目。
3、newfs -i 2048 -b 8192 -f 1024
newfs创建新的文件系统
-i 2048更改inode每2KB创建一个
-b 8192设置block size的大小为8kB
-f 1024设置fragments的大小为1KB
四、inode与ln (对于ext2 inode)
1、当我们用ls 查看某个目录或文件时,如果加上-i 参数,就可以看到inode节点了;
[root@localhost ~]# ls -li lsfile.sh
2408949 -rwxr-xr-x 1 root root 7 04-21 12:47 lsfile.sh
可见lsfile.sh 的inode值是2408949 ;
2、创建硬链接,硬链接和源文件关系;
用ln创建文件硬链接的语法:
[root@localhost ~]#ln 源文件 目标文件
下面我们举一个例子,在这个例子中,我们要为sun.txt创建其硬链接 sun002.txt。然后看一下 sun.txt和sun002.txt的属性的变化;
[root@localhost ~]# ls -li sun.txt 注:查看sun.txt的属性;
2408263 -rw-r--r-- 1 root root 29 04-22 21:02 sun.txt 注:这是sun.txt的属性;
[root@localhost ~]# ln sun.txt sun002.txt 注:我们通过ln 来创建sun.txt的硬链接文件sun002.txt
[root@localhost ~]# ls -li sun* 注:我们列一下sun.txt 和sun002.txt
2408263 -rw-r--r-- 2 root root 29 04-22 21:02 sun002.txt
2408263 -rw-r--r-- 2 root root 29 04-22 21:02 sun.txt
我们可以看到sun.txt在没有创建硬链接文件sun002.txt的时候,其链接个数是 1(也就是-rw-r--r--后的那个数值),创建了硬链接 sun002.txt创建后,这个值变成了2。也就是说,我们每次为sun.txt创建一个新的硬链接文件后,其硬链接个数都会增加1。
inode值相同的文件,他们的关系是互为硬链接的关系。当我们修改其中一个文件的内容时,互为硬链接的文件的内容也会跟着变化。如果我们删除互为硬链接关系的某个文件时,其它的文件并不受影响。比如我们把sun.txt删除后,我们还是一样能看到sun002.txt的内容,并且sun02.txt仍是存在的。
可以这么理解,互为硬链接关系的文件,他们好像是克隆体,他们的属性几乎是完全一样;
下面的例子,我们把sun.txt删除,然后我们看一下sun002.txt是不是能看到其内容。
[root@localhost ~]# rm -rf sun.txt
[root@localhost ~]# more sun002.txt
注意:硬链接不能为目录创建,只有文件才能创建硬链接。
3、软链接的创建,及软接与源文件的关系;
创建软链接(也被称为符号链接)的语法;
[root@localhost ~]# ln -s 源文文件或目录 目标文件或目录
软链接也叫符号链接,他和硬链接有所不同,软链接文件只是其源文件的一个标记。当我们删除了源文件后,链接文件不能独立存在,虽然仍保留文件名,但我们却不能查看软链接文件的内容了。
[root@localhost ~]# ls -li linuxsir001.txt
2408274 -rw-r--r-- 1 root root 29 04-22 21:53 linuxsir001.txt
[root@localhost ~]# ln -s linuxsir001.txt linuxsir002.txt
[root@localhost ~]# ls -li linuxsir001.txt linuxsir002.txt
2408274 -rw-r--r-- 1 root root 29 04-22 21:53 linuxsir001.txt
2408795 lrwxrwxrwx 1 root root 15 04-22 21:54 linuxsir002.txt -> linuxsir001.txt
上面的例子,首先我们查看 linuxsir001.txt 的属性,比如inode、所属文件种类、创建或修改时间等... ...我们来对比一下:
首先 对比一下节点:两个文件的节点不同;
其次 两个文件的归属的种类不同 linuxsir001.txt是-,也就是普通文件,而linuxsir002.txt 是l,它是一个链接文件;
第三 两个文件的读写权限不同 linuxsir001.txt 是rw-r--r-- ,而linuxsir002.txt的读写权限是 rwxrwxrwx
第三 两者的硬链接个数相同;都是1
第四 两文件的属主和所归属的用户组相同;
第五 修改(或访问、创建)时间不同;
我们还注意到了linuxsir002.txt 后面有一个标记 ->,这表示linuxsir002.txt 是linuxsir001.txt的软链接文件。
值得我们注意的是:当我们修改链接文件的内容时,就意味着我们在修改源文件的内容。当然源文件的属性也会发生改变,链接文件的属性并不会发生变化。当我们把源文件删除后,链接文件只存在一个文件名,因为失去了源文件,所以软链接文件也就不存在了。这一点和硬链接是不同的;
[root@localhost ~]# rm -rf linuxsir001.txt 注:删除linuxsir001.txt
[root@localhost ~]# ls -li linuxsir002.txt 注:查看linuxsir002 的属性;
2408795 lrwxrwxrwx 1 root root 15 04-22 21:54 linuxsir002.txt -> linuxsir001.txt
[root@localhost ~]# more linuxsir002.txt 注:查看linuxsir002.txt的内容;
linuxsir002.txt: 没有那个文件或目录 注:得到提示,linuxsir002.txt不存在。
上面的例子告诉我们,如果一个链接文件失去了源,就意味着他已经不存在了;
我们可以看到软链接文件,其实只是源文件的一个标记,当源文件失去时,他也就是存在了。软链接文件只是占用了inode来存储软链接文件属性等信息,但文件存储是指向源文件的。
软链接,可以为文件或目录都适用。无论是软链接还是硬链接,都可以用rm来删除。rm工具是通用的。