Chinaunix首页 | 论坛 | 博客
  • 博客访问: 619542
  • 博文数量: 233
  • 博客积分: 2221
  • 博客等级: 大尉
  • 技术积分: 3184
  • 用 户 组: 普通用户
  • 注册时间: 2010-02-16 14:01
个人简介

瓜瓜派的瓜瓜

文章分类

全部博文(233)

文章存档

2013年(28)

2012年(197)

2011年(8)

分类: C/C++

2012-01-09 16:48:43

内存管理是C++最令人切齿痛恨的问题,也是C++最有争议的问题,C++高手从中获得了更好的性能,更大的自由,C++菜鸟的收获则是一遍一遍的检查代码和对C++的痛恨,但内存管理在C++中无处不在,内存泄漏几乎在每个C++程序中都会发生,因此要想成为C++高手,内存管理一关是必须要过的,除非放弃C++,转到Java或者.NET,他们的内存管理基本是自动的,当然你也放弃了自由和对内存的支配权,还放弃了C++超绝的性能。本期专题将从内存管理、内存泄漏、内存回收这三个方面来探讨C++内存管理问题。
内存管理伟大的Bill Gates 曾经失言:

640K ought to be enough for everybody  Bill Gates 1981 
程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本文的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。
1.1 C++内存管理详解1.1.1 内存分配方式1.1.1.1 分配方式简介  在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区。
  栈,在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
  堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
  自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。
  全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
  常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改。
1.1.1.2 明确区分堆与栈  在bbs上,堆与栈的区分问题,似乎是一个永恒的话题,由此可见,初学者对此往往是混淆不清的,所以我决定拿他第一个开刀。
  首先,我们举一个例子:
void f() { int* p=new int[5]; } 
  这条短短的一句话就包含了堆与栈,看到new,我们首先就应该想到,我们分配了一块堆内存,那么指针p呢?他分配的是一块栈内存,所以这句话的意思就是:在栈内存中存放了一个指向一块堆内存的指针p。在程序会先确定在堆中分配内存的大小,然后调用operator new分配内存,然后返回这块内存的首地址,放入栈中,他在VC6下的汇编代码如下:
00401028 push 14h 
0040102A call operator new (00401060) 
0040102F add esp,4 
00401032 mov dword ptr [ebp-8],eax 
00401035 mov eax,dword ptr [ebp-8] 
00401038 mov dword ptr [ebp-4],eax 
  这里,我们为了简单并没有释放内存,那么该怎么去释放呢?是delete p么?澳,错了,应该是delete []p,这是为了告诉编译器:我删除的是一个数组,VC6就会根据相应的Cookie信息去进行释放内存的工作。
1.1.1.3 堆和栈究竟有什么区别?  好了,我们回到我们的主题:堆和栈究竟有什么区别?
  主要的区别由以下几点:

1、管理方式不同;

2、空间大小不同;

3、能否产生碎片不同;

4、生长方向不同;

5、分配方式不同;

6、分配效率不同;
  管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak
  空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M(好像是,记不清楚了)。当然,我们可以修改:
  打开工程,依次操作菜单如下:Project->Setting->Link,在Category 中选中Output,然后在Reserve中设定堆栈的最大值和commit
  注意:reserve最小值为4Bytecommit是保留在虚拟内存的页文件里面,它设置的较大会使栈开辟较大的值,可能增加内存的开销和启动时间。
  碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构,这里我们就不再一一讨论了。
  生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
  分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由alloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
  分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
  从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址,EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
  虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果,就算是在你的程序运行过程中,没有发生上面的问题,你还是要小心,说不定什么时候就崩掉,那时候debug可是相当困难的:)
1.1.2 控制C++的内存分配  在嵌入式系统中使用C++的一个常见问题是内存分配,即对new  delete 操作符的失控。
  具有讽刺意味的是,问题的根源却是C++对内存的管理非常的容易而且安全。具体地说,当一个对象被消除时,它的析构函数能够安全的释放所分配的内存。
  这当然是个好事情,但是这种使用的简单性使得程序员们过度使用new  delete,而不注意在嵌入式C++环境中的因果关系。并且,在嵌入式系统中,由于内存的限制,频繁的动态分配不定大小的内存会引起很大的问题以及堆破碎的风险。
  作为忠告,保守的使用内存分配是嵌入式环境中的第一原则。
  但当你必须要使用new delete时,你不得不控制C++中的内存分配。你需要用一个全局的new delete来代替系统的内存分配符,并且一个类一个类的重载new delete
  一个防止堆破碎的通用方法是从不同固定大小的内存持中分配不同类型的对象。对每个类重载new delete就提供了这样的控制。
1.1.2.1 重载全局的newdelete操作符  可以很容易地重载new  delete 操作符,如下所示:
void * operator new(size_t size)
{
void *p = malloc(size);
return (p);
}
void operator delete(void *p);
{
free(p);

  这段代码可以代替默认的操作符来满足内存分配的请求。出于解释C++的目的,我们也可以直接调用malloc()free()
  也可以对单个类的new  delete 操作符重载。这是你能灵活的控制对象的内存分配。
class TestClass {
public:
void * operator new(size_t size);
void operator delete(void *p);
// .. other members here ...
};
void *TestClass::operator new(size_t size)
{
void *p = malloc(size); // Replace this with alternative allocator
return (p);
}
void TestClass::operator delete(void *p)
{
free(p); // Replace this with alternative de-allocator

  所有TestClass 对象的内存分配都采用这段代码。更进一步,任何从TestClass 继承的类也都采用这一方式,除非它自己也重载了new  delete 操作符。通过重载new  delete 操作符的方法,你可以自由地采用不同的分配策略,从不同的内存池中分配不同的类对象。
1.1.2.2 为单个的类重载 new[ ]delete[ ]  必须小心对象数组的分配。你可能希望调用到被你重载过的new  delete 操作符,但并不如此。内存的请求被定向到全局的new[ ]delete[ ] 操作符,而这些内存来自于系统堆。

C++将对象数组的内存分配作为一个单独的操作,而不同于单个对象的内存分配。为了改变这种方式,你同样需要重载new[ ]  delete[ ]操作符。
class TestClass {
public:
void * operator new[ ](size_t size);
void operator delete[ ](void *p);
// .. other members here ..
};
void *TestClass::operator new[ ](size_t size)
{
void *p = malloc(size);
return (p);
}
void TestClass::operator delete[ ](void *p)
{
free(p);
}
int main(void)
{
TestClass *p = new TestClass[10];
// ... etc ...
delete[ ] p;

但是注意:对于多数C++的实现,new[]操作符中的个数参数是数组的大小加上额外的存储对象数目的一些字节。在你的内存分配机制重要考虑的这一点。你应该尽量避免分配对象数组,从而使你的内存分配策略简单。
1.1.3 常见的内存错误及其对策发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:

内存分配未成功,却使用了它。
  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行
  检查。如果是用mallocnew来申请内存,应该用if(p==NULL) if(p!=NULL)进行防错处理。

内存分配虽然成功,但是尚未初始化就引用它。
  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

内存分配成功并且已经初始化,但操作越过了内存的边界。
  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

忘记了释放内存,造成内存泄露。
  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。
  动态内存的申请与释放必须配对,程序中mallocfree的使用次数一定要相同,否则肯定有错误(new/delete同理)。

释放了内存却继续使用它。


  有三种情况:
  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
  (3)使用freedelete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。
  【规则1】用mallocnew申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。
  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。
  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。
  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。
  【规则5】用freedelete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。
1.1.4 指针与数组的对比
C++/C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。
  数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
  指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
  下面以字符串为例比较指针与数组的特性。
1.1.4.1 修改内容下面示例中,字符数组a的容量是6个字符,其内容为helloa的内容可以改变,如a[0]= X’。指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。
char a[] = “hello”;
a[0] = ‘X’;
cout << a << endl;
char *p = world; // 注意p指向常量字符串
p[0] = X; // 编译器不能发现该错误
cout << p << endl;
1.1.4.2 内容复制与比较  不能对数组名进行直接复制与比较。若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较ba的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。
语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数mallocp申请一块容量为strlen(a)+1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。
// 数组…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)

// 指针…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len+1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)

1.1.4.3 计算内存容量用运算符sizeof可以计算出数组的容量(字节数)。如下示例中,sizeof(a)的值是12(注意别忘了’’)。指针p指向a,但是sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。C++/C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。
char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12字节
cout<< sizeof(p) << endl; // 4字节


注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。如下示例中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)
void Func(char a[100])
{

cout<< sizeof(a) << endl; // 4字节而不是100字节
}
1.1.5 指针参数是如何传递内存的?如果函数的参数是一个指针,不要指望用该指针去申请动态内存。如下示例中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?
void GetMemory(char *p, int num)
{

p = (char *)malloc(sizeof(char) * num);
}
void Test(void)
{

char *str = NULL;

GetMemory(str, 100); // str 仍然为 NULL 

strcpy(str, "hello"); // 运行错误
}
毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。
如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例:
void GetMemory2(char **p, int num)
{

*p = (char *)malloc(sizeof(char) * num);
}
void Test2(void)
{

char *str = NULL;

GetMemory2(&str, 100); // 注意参数是 &str,而不是str

strcpy(str, "hello"); 

cout<< str << endl;

free(str); 
}
由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例:
char *GetMemory3(int num)
{

char *p = (char *)malloc(sizeof(char) * num);

return p;
}
void Test3(void)
{

char *str = NULL;

str = GetMemory3(100); 

strcpy(str, "hello");

cout<< str << endl;

free(str); 
}
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例:
char *GetString(void)
{

char p[] = "hello world";

return p; // 编译器将提出警告
}
void Test4(void)
{

char *str = NULL;

str = GetString(); // str 的内容是垃圾

cout<< str << endl;
}
用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。
如果把上述示例改写成如下示例,会怎么样?
char *GetString2(void)
{

char *p = "hello world";

return p;
}
void Test5(void)
{

char *str = NULL;

str = GetString2();

cout<< str << endl;
}
函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。
1.1.6 杜绝“野指针”  “野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。 “野指针”的成因主要有两种:
1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如
char *p = NULL;
char *str = (char *) malloc(100);
2)指针pfree或者delete之后,没有置为NULL,让人误以为p是个合法的指针。
3)指针操作超越了变量的作用域范围。这种情况让人防不胜防,示例程序如下:
class A 


public:

void Func(void){ cout << Func of class A << endl; }
};
void Test(void)
{

A *p;

{

A a;

p = &a; // 注意 a 的生命期

}

p->Func(); // p是“野指针”
}
函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。
1.1.7 有了malloc/free为什么还要new/delete
mallocfreeC++/C语言的标准库函数,new/deleteC++的运算符。它们都可用于申请动态内存和释放内存。
  对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。我们先看一看malloc/freenew/delete如何实现对象的动态内存管理,见示例:
class Obj
{

public :

Obj(void){ cout << Initialization << endl; }

~Obj(void){ cout << Destroy << endl; }

void Initialize(void){ cout << Initialization << endl; }

void Destroy(void){ cout << Destroy << endl; }
};
void UseMallocFree(void)
{

Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存

a->Initialize(); // 初始化

//

a->Destroy(); // 清除工作

free(a); // 释放内存
}
void UseNewDelete(void)
{

Obj *a = new Obj; // 申请动态内存并且初始化

//

delete a; // 清除并且释放内存
}
  类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于malloc/free不能执行构造函数与析构函数,必须调用成员函数InitializeDestroy来完成初始化与清除工作。函数UseNewDelete则简单得多。
  所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/freenew/delete是等价的。
  既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,结果也会导致程序出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。
阅读(2390) | 评论(7) | 转发(2) |
给主人留下些什么吧!~~

2gua2012-01-09 16:57:32

3.2 浅议C++ 中的垃圾回收方法  许多 C 或者 C++ 程序员对垃圾回收嗤之以鼻,认为垃圾回收肯定比自己来管理动态内存要低效,而且在回收的时候一定会让程序停顿在那里,而如果自己控制内存管理的话,分配和释放时间都是稳定的,不会导致程序停顿。最后,很多 C/C++ 程序员坚信在C/C++ 中无法实现垃圾回收机制。这些错误的观点都是由于不了解垃圾回收的算法而臆想出来的。
  其实垃圾回收机制并不慢,甚至比动态内存分配更高效。因为我们可以只分配不释放,那么分配内存的时候只需要从堆上一直的获得新的内存,移动堆顶的指针就够了;而释放的过程被省略了,自然也加快了速度。现代的垃圾回收算法已经发展了很多,增量收集算法已经可以让垃圾回收过程分段进行,避免打断程序的运行了。而传统的动态内存管理的算法同样有在适当的时间收集内存碎片的工作要做,并不比垃圾回收更有优势。
  而垃圾回收的算法的基础通常基于扫描并标记当前可能被使用的所有内存块,从已经被分配的所有内存中把未标记的内存回收来做的。C/C++ 中无法实现垃圾回收的观点通常基于无法正确扫描出所有可能还会被使用的内存块,但

2gua2012-01-09 16:57:16

3 探讨C++内存回收3.1 C++内存对象大会战  如果一个人自称为程序高手,却对内存一无所知,那么我可以告诉你,他一定在吹牛。用C或C++写程序,需要更多地关注内存,这不仅仅是因为内存的分配是否合理直接影响着程序的效率和性能,更为主要的是,当我们操作内存的时候一不小心就会出现问题,而且很多时候,这些问题都是不易发觉的,比如内存泄漏,比如悬挂指针。笔者今天在这里并不是要讨论如何避免这些问题,而是想从另外一个角度来认识C++内存对象。
  我们知道,C++将内存划分为三个逻辑区域:堆、栈和静态存储区。既然如此,我称位于它们之中的对象分别为堆对象,栈对象以及静态对象。那么这些不同的内存对象有什么区别了?堆对象和栈对象各有什么优劣了?如何禁止创建堆对象或栈对象了?这些便是今天的主题。
3.1.1 基本概念  先来看看栈。栈,一般用于存放局部变量或对象,如我们在函数定义中用类似下面语句声明的对象:
Type stack_object ;

stack_object便是一个栈对象,它的生命期是从定义点开始,当所在函数返回时

2gua2012-01-09 16:56:49

2.3.2 内存泄漏的发生方式  以发生的方式来分类,内存泄漏可以分为4类:

1. 常发性内存泄漏。发生内存泄漏的代码会被多次执行到,每次被执行的时候都会导致一块内存泄漏。比如例二,如果Something()函数一直返回True,那么pOldBmp指向的HBITMAP对象总是发生泄漏。

2. 偶发性内存泄漏。发生内存泄漏的代码只有在某些特定环境或操作过程下才会发生。比如例二,如果Something()函数只有在特定环境下才返回True,那么pOldBmp指向的HBITMAP对象并不总是发生泄漏。常发性和偶发性是相对的。对于特定的环境,偶发性的也许就变成了常发性的。所以测试环境和测试方法对检测内存泄漏至关重要。
3. 一次性内存泄漏。发生内存泄漏的代码只会被执行一次,或者由于算法上的缺陷,导致总会有一块仅且一块内存发生泄漏。比如,在类的构造函数中分配内存,在析构函数中却没有释放该内存,但是因为这个类是一个Singleton,所以内存泄漏只会发生一次。另一个例子:
char* g_lpszFileNam

2gua2012-01-09 16:56:20

2 内存泄漏2.1 C++中动态内存分配引发问题的解决方案假设我们要开发一个String类,它可以方便地处理字符串数据。我们可以在类中声明一个数组,考虑到有时候字符串极长,我们可以把数组大小设为200,但一般的情况下又不需要这么多的空间,这样是浪费了内存。对了,我们可以使用new操作符,这样是十分灵活的,但在类中就会出现许多意想不到的问题,本文就是针对这一现象而写的。现在,我们先来开发一个String类,但它是一个不完善的类。的确,我们要刻意地使它出现各种各样的问题,这样才好对症下药。好了,我们开始吧!
/* String.h */
#ifndef STRING_H_
#define STRING_H_
class String
{
private:
char * str; //存储数据
int len; //字符串长度
public:
String(const char * s); //构造函数
String(); // 默认构造函

2gua2012-01-09 16:55:53

1.2.8 Code Inspection  如果你严格遵照资源管理的条款,你就不会再资源泄露或者两次删除的地方遇到麻烦。你也降低了访问野指针的几率。同样的,遵循原有的规则,用delete删除用new申请的德指针,不要两次删除一个指针。你也不会遇到麻烦。但是,那个是更好的注意呢?
  这两个方法有一个很大的不同点。就是和寻找传统方法的bug相比,找到违反资源管理的规定要容易的多。后者仅需要一个代码检测或者一个运行测试,而前者则在代码中隐藏得很深,并需要很深的检查。
  设想你要做一段传统的代码的内存泄露检查。第一件事,你要做的就是grep所有在代码中出现的new,你需要找出被分配空间地指针都作了什么。你需要确定导致删除这个指针的所有的执行路径。你需要检查break语句,过程返回,异常。原有的指针可能赋给另一个指针,你对这个指针也要做相同的事。
  相比之下,对于一段用资源管理技术实现的代码。你也用grep检查所有的new,但是这次你只需要检查邻近的调用:
  ● 这是一个直接的Strong Pointer转换,还是我们在一个构造函