Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2145904
  • 博文数量: 333
  • 博客积分: 10161
  • 博客等级: 上将
  • 技术积分: 5238
  • 用 户 组: 普通用户
  • 注册时间: 2008-02-19 08:59
文章分类

全部博文(333)

文章存档

2017年(10)

2014年(2)

2013年(57)

2012年(64)

2011年(76)

2010年(84)

2009年(3)

2008年(37)

分类: Java

2017-05-05 00:38:25

原文链接 : http://blog.csdn.net/fengyedeyanlei/article/details/52485165
KafkaSpout的源码

package storm.kafka; import backtype.storm.Config; import backtype.storm.metric.api.IMetric; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.base.BaseRichSpout; import kafka.message.Message; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import storm.kafka.PartitionManager.KafkaMessageId; import java.util.*; // TODO: need to add blacklisting // TODO: need to make a best effort to not re-emit messages if don't have to public class KafkaSpout extends BaseRichSpout { public static class MessageAndRealOffset { public Message msg; public long offset; public MessageAndRealOffset(Message msg, long offset) { this.msg = msg; this.offset = offset;
        }
    } static enum EmitState {
        EMITTED_MORE_LEFT,
        EMITTED_END,
        NO_EMITTED
    } public static final Logger LOG = LoggerFactory.getLogger(KafkaSpout.class);

    String _uuid = UUID.randomUUID().toString();
    SpoutConfig _spoutConfig;
    SpoutOutputCollector _collector;
    PartitionCoordinator _coordinator;
    DynamicPartitionConnections _connections;
    ZkState _state; long _lastUpdateMs = 0; int _currPartitionIndex = 0; public KafkaSpout(SpoutConfig spoutConf) {
        _spoutConfig = spoutConf;
    } @Override public void open(Map conf, final TopologyContext context, final SpoutOutputCollector collector) {
        _collector = collector;

        Map stateConf = new HashMap(conf);
        List zkServers = _spoutConfig.zkServers; if (zkServers == null) {
            zkServers = (List) conf.get(Config.STORM_ZOOKEEPER_SERVERS);
        }
        Integer zkPort = _spoutConfig.zkPort; if (zkPort == null) {
            zkPort = ((Number) conf.get(Config.STORM_ZOOKEEPER_PORT)).intValue();
        }
        stateConf.put(Config.TRANSACTIONAL_ZOOKEEPER_SERVERS, zkServers);
        stateConf.put(Config.TRANSACTIONAL_ZOOKEEPER_PORT, zkPort);
        stateConf.put(Config.TRANSACTIONAL_ZOOKEEPER_ROOT, _spoutConfig.zkRoot);
        _state = new ZkState(stateConf);

        _connections = new DynamicPartitionConnections(_spoutConfig, KafkaUtils.makeBrokerReader(conf, _spoutConfig)); // using TransactionalState like this is a hack int totalTasks = context.getComponentTasks(context.getThisComponentId()).size(); if (_spoutConfig.hosts instanceof StaticHosts) {
            _coordinator = new StaticCoordinator(_connections, conf, _spoutConfig, _state, context.getThisTaskIndex(), totalTasks, _uuid);
        } else {
            _coordinator = new ZkCoordinator(_connections, conf, _spoutConfig, _state, context.getThisTaskIndex(), totalTasks, _uuid);
        }

        context.registerMetric("kafkaOffset", new IMetric() {
            KafkaUtils.KafkaOffsetMetric _kafkaOffsetMetric = new KafkaUtils.KafkaOffsetMetric(_spoutConfig.topic, _connections); @Override public Object getValueAndReset() {
                List pms = _coordinator.getMyManagedPartitions();
                Set latestPartitions = new HashSet(); for (PartitionManager pm : pms) {
                    latestPartitions.add(pm.getPartition());
                }
                _kafkaOffsetMetric.refreshPartitions(latestPartitions); for (PartitionManager pm : pms) {
                    _kafkaOffsetMetric.setLatestEmittedOffset(pm.getPartition(), pm.lastCompletedOffset());
                } return _kafkaOffsetMetric.getValueAndReset();
            }
        }, _spoutConfig.metricsTimeBucketSizeInSecs);

        context.registerMetric("kafkaPartition", new IMetric() { @Override public Object getValueAndReset() {
                List pms = _coordinator.getMyManagedPartitions();
                Map concatMetricsDataMaps = new HashMap(); for (PartitionManager pm : pms) {
                    concatMetricsDataMaps.putAll(pm.getMetricsDataMap());
                } return concatMetricsDataMaps;
            }
        }, _spoutConfig.metricsTimeBucketSizeInSecs);
    } @Override public void close() {
        _state.close();
    } @Override public void nextTuple() {
        List managers = _coordinator.getMyManagedPartitions(); for (int i = 0; i < managers.size(); i++) { try { // in case the number of managers decreased _currPartitionIndex = _currPartitionIndex % managers.size();
                EmitState state = managers.get(_currPartitionIndex).next(_collector); if (state != EmitState.EMITTED_MORE_LEFT) {
                    _currPartitionIndex = (_currPartitionIndex + 1) % managers.size();
                } if (state != EmitState.NO_EMITTED) { break;
                }
            } catch (FailedFetchException e) {
                LOG.warn("Fetch failed", e);
                _coordinator.refresh();
            }
        } long now = System.currentTimeMillis(); if ((now - _lastUpdateMs) > _spoutConfig.stateUpdateIntervalMs) {
            commit();
        }
    } @Override public void ack(Object msgId) {
        KafkaMessageId id = (KafkaMessageId) msgId;
        PartitionManager m = _coordinator.getManager(id.partition); if (m != null) {
            m.ack(id.offset);
        }
    } @Override public void fail(Object msgId) {
        KafkaMessageId id = (KafkaMessageId) msgId;
        PartitionManager m = _coordinator.getManager(id.partition); if (m != null) {
            m.fail(id.offset);
        }
    } @Override public void deactivate() {
        commit();
    } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(_spoutConfig.scheme.getOutputFields());
    } private void commit() {
        _lastUpdateMs = System.currentTimeMillis(); for (PartitionManager manager : _coordinator.getMyManagedPartitions()) {
            manager.commit();
        }
    }

}
		
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179

KafkaSpout在配置使用时必须传入一个SpoutConfig,而这个SpoutConfig里卖弄保存有全部的kafka的配置:

package storm.kafka; import java.io.Serializable; import java.util.List; public class SpoutConfig extends KafkaConfig implements Serializable { public List zkServers = null;//记录配置的消费的zk节点信息 public Integer zkPort = null;//zk的端口 public String zkRoot = null;//保存kafka消费信息的节点位置 public String id = null;//当前spout的消费组名称,如果多个spout名称一样,将共享消费进度,否则将不共享消费进度 // setting for how often to save the current kafka offset to ZooKeeper public long stateUpdateIntervalMs = 2000; //设置线程多久将消费进度保存到zk上 // Exponential back-off retry settings.  These are used when retrying messages after a bolt // calls OutputCollector.fail(). public long retryInitialDelayMs = 0; //设置发送boult中初始化的时间,0为没限制 public double retryDelayMultiplier = 1.0; public long retryDelayMaxMs = 60 * 1000;//发送到boult后超过多长时间为失败 public SpoutConfig(BrokerHosts hosts, String topic, String zkRoot, String id) { super(hosts, topic); this.zkRoot = zkRoot; this.id = id;
    }
}
		
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

从代码里可以看到SpoutConfig继承了KafkaConfig,因为strom需要将代码分发到Supervisor因此实现了Serializable序列化接口,可以将代码发送到各个Supervisor节点上!

package storm.kafka; import backtype.storm.spout.MultiScheme; import backtype.storm.spout.RawMultiScheme; import java.io.Serializable; public class KafkaConfig implements Serializable { public final BrokerHosts hosts;//设置kafka从哪里获取相关的配置信息 public final String topic;//从哪个topic开始消费 public final String clientId;//设置客户端标识 public int fetchSizeBytes = 1024 * 1024;//发给Kafka的每个FetchRequest中,用此指定想要的response中总的消息的大小 public int socketTimeoutMs = 10000;//设置的超时时间 public int fetchMaxWait = 10000;//设置的在broker无消息时的等待时间 public int bufferSizeBytes = 1024 * 1024;//SimpleConsumer所使用的SocketChannel的读缓冲区大小 public MultiScheme scheme = new RawMultiScheme();//设置从服务器读取的byte[]流反序列化方式 public boolean ignoreZkOffsets = false;//是否强制从Kafka中offset最小的开始读起 public long startOffsetTime = kafka.api.OffsetRequest.EarliestTime();//从哪里的offset开始读取消息,默认从消息的最前端开始,有两种方式可选 public long maxOffsetBehind = Long.MAX_VALUE;//KafkaSpout读取的进度与目标进度相差多少,相差太多,Spout会丢弃中间的消息 public boolean useStartOffsetTimeIfOffsetOutOfRange = true;//如果所请求的offset对应的消息在Kafka中不存在,是否使用startOffsetTime public int metricsTimeBucketSizeInSecs = 60;//多长时间统计一次消息 public KafkaConfig(BrokerHosts hosts, String topic) { this(hosts, topic, kafka.api.OffsetRequest.DefaultClientId());
    } public KafkaConfig(BrokerHosts hosts, String topic, String clientId) { this.hosts = hosts; this.topic = topic; this.clientId = clientId;
    }

}
		
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

附上Topology

package test; import java.util.ArrayList; import java.util.List; import java.util.Map; import storm.kafka.BrokerHosts; import storm.kafka.KafkaSpout; import storm.kafka.SpoutConfig; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.IRichBolt; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; public class TestMain { public static void main(String[] args) throws Exception {
        Config conf = new Config();
        conf.setDebug(false);//关闭调试 String zks = "192.168.0.11:2181";//设置zk的地址 String topic = "testflume";//消费的topic名称 String zkRoot = "/kafka"; // 消费信息保存在zk的地址 String id = "test";//客户端的ID BrokerHosts brokerHosts = new ZkHosts(zks, "/brokers");//kafka和zk整合时设置的kafka根路径 SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
        spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
        spoutConf.ignoreZkOffsets = false; //      spoutConf.startOffsetTime = kafka.api.OffsetRequest.LatestTime();//从最新消息的开始读取 spoutConf.startOffsetTime = kafka.api.OffsetRequest.EarliestTime();//从最旧的消息开始读取 spoutConf.zkPort = 2181;//设置zk的端口 List servers = new ArrayList<>();
        servers.add("192.168.0.11");
        spoutConf.zkServers = servers;//设置zk的地址 TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("log-reader", new KafkaSpout(spoutConf));//设置spout的名称 builder.setBolt("bolt1", new Bolt1(), 2).shuffleGrouping("log-reader");//设置bolt的名称和分组的字段 //提交任务 if (args != null && args.length > 0) {
            conf.setNumWorkers(3);
            StormSubmitter.submitTopologyWithProgressBar("AGX", conf,
                    builder.createTopology());
        } else {
            conf.setMaxTaskParallelism(3);
            conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("AGX_STORM", conf, builder.createTopology());
            Thread.sleep(100000000000l);
            cluster.shutdown();
        }
    } /**
     * 对kafka发来的数据进行第一次处理
     * 
     * @author hasee
     *
     */ public static class Bolt1 implements IRichBolt { OutputCollector _collector; public void prepare(Map stormConf, TopologyContext context,
                OutputCollector collector) {
            _collector = collector;
        } public void execute(Tuple input) { try {

                String msg = input.getString(0);
                System.out.println("开始消费消息:" + msg);
                _collector.ack(input);
            } catch (Exception e) {
                e.printStackTrace();
            } finally {

            }
        } public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("id", "click", "browse"));
        } @Override public void cleanup() { // TODO Auto-generated method stub } @Override public Map getComponentConfiguration() { // TODO Auto-generated method stub return null;
        }
    }
}
		
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106

附上storm确定开始位置的代码

package storm.kafka; import backtype.storm.Config; import backtype.storm.metric.api.CombinedMetric; import backtype.storm.metric.api.CountMetric; import backtype.storm.metric.api.MeanReducer; import backtype.storm.metric.api.ReducedMetric; import backtype.storm.spout.SpoutOutputCollector; import com.google.common.collect.ImmutableMap; import kafka.javaapi.consumer.SimpleConsumer; import kafka.javaapi.message.ByteBufferMessageSet; import kafka.message.MessageAndOffset; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import storm.kafka.KafkaSpout.EmitState; import storm.kafka.KafkaSpout.MessageAndRealOffset; import storm.kafka.trident.MaxMetric; import java.util.*; public class PartitionManager { public static final Logger LOG = LoggerFactory.getLogger(PartitionManager.class); private final CombinedMetric _fetchAPILatencyMax; private final ReducedMetric _fetchAPILatencyMean; private final CountMetric _fetchAPICallCount; private final CountMetric _fetchAPIMessageCount;
    Long _emittedToOffset; // _pending key = Kafka offset, value = time at which the message was first submitted to the topology private SortedMap _pending = new TreeMap(); private final FailedMsgRetryManager _failedMsgRetryManager; // retryRecords key = Kafka offset, value = retry info for the given message Long _committedTo;
    LinkedList _waitingToEmit = new LinkedList();
    Partition _partition;
    SpoutConfig _spoutConfig;
    String _topologyInstanceId;
    SimpleConsumer _consumer;
    DynamicPartitionConnections _connections;
    ZkState _state;
    Map _stormConf; long numberFailed, numberAcked; public PartitionManager(DynamicPartitionConnections connections, String topologyInstanceId, ZkState state, Map stormConf, SpoutConfig spoutConfig, Partition id) {
        _partition = id;
        _connections = connections;
        _spoutConfig = spoutConfig;
        _topologyInstanceId = topologyInstanceId;
        _consumer = connections.register(id.host, id.partition);
        _state = state;
        _stormConf = stormConf;
        numberAcked = numberFailed = 0;

        _failedMsgRetryManager = new ExponentialBackoffMsgRetryManager(_spoutConfig.retryInitialDelayMs,
                                                                           _spoutConfig.retryDelayMultiplier,
                                                                           _spoutConfig.retryDelayMaxMs);

        String jsonTopologyId = null;
        Long jsonOffset = null; //确定开始位置的代码位置在这里 String path = committedPath();//计算出配置文件的位置 try {
            Map json = _state.readJSON(path);//取出配置文件 LOG.info("Read partition information from: " + path + "  --> " + json ); if (json != null) {
                jsonTopologyId = (String) ((Map) json.get("topology")).get("id");
                jsonOffset = (Long) json.get("offset");//获得上次读取的位置 }
        } catch (Throwable e) {
            LOG.warn("Error reading and/or parsing at ZkNode: " + path, e);
        }

        Long currentOffset = KafkaUtils.getOffset(_consumer, spoutConfig.topic, id.partition, spoutConfig);//取出kafka最新的offset //判断配置读取出来的是不是空,如果是空按照kafka的位置开始读取,否则重上次位置开始 if (jsonTopologyId == null || jsonOffset == null) { // failed to parse JSON? _committedTo = currentOffset;
            LOG.info("No partition information found, using configuration to determine offset");
        } else if (!topologyInstanceId.equals(jsonTopologyId) && spoutConfig.ignoreZkOffsets) {
            _committedTo = KafkaUtils.getOffset(_consumer, spoutConfig.topic, id.partition, spoutConfig.startOffsetTime);
            LOG.info("Topology change detected and ignore zookeeper offsets set to true, using configuration to determine offset");
        } else {
            _committedTo = jsonOffset;
            LOG.info("Read last commit offset from zookeeper: " + _committedTo + "; old topology_id: " + jsonTopologyId + " - new topology_id: " + topologyInstanceId );
        } if (currentOffset - _committedTo > spoutConfig.maxOffsetBehind || _committedTo <= 0) {
            LOG.info("Last commit offset from zookeeper: " + _committedTo);
            Long lastCommittedOffset = _committedTo;
            _committedTo = currentOffset;
            LOG.info("Commit offset " + lastCommittedOffset + " is more than " +
                    spoutConfig.maxOffsetBehind + " behind latest offset " + currentOffset + ", resetting to startOffsetTime=" + spoutConfig.startOffsetTime);
        }

        LOG.info("Starting Kafka " + _consumer.host() + ":" + id.partition + " from offset " + _committedTo);
        _emittedToOffset = _committedTo;

        _fetchAPILatencyMax = new CombinedMetric(new MaxMetric());
        _fetchAPILatencyMean = new ReducedMetric(new MeanReducer());
        _fetchAPICallCount = new CountMetric();
        _fetchAPIMessageCount = new CountMetric();
    } public Map getMetricsDataMap() {
        Map ret = new HashMap();
        ret.put(_partition + "/fetchAPILatencyMax", _fetchAPILatencyMax.getValueAndReset());
        ret.put(_partition + "/fetchAPILatencyMean", _fetchAPILatencyMean.getValueAndReset());
        ret.put(_partition + "/fetchAPICallCount", _fetchAPICallCount.getValueAndReset());
        ret.put(_partition + "/fetchAPIMessageCount", _fetchAPIMessageCount.getValueAndReset()); return ret;
    } //开始发送消息 //returns false if it's reached the end of current batch public EmitState next(SpoutOutputCollector collector) { if (_waitingToEmit.isEmpty()) {
            fill();
        } while (true) {
            MessageAndRealOffset toEmit = _waitingToEmit.pollFirst(); if (toEmit == null) { return EmitState.NO_EMITTED;
            }
            Iterable tups = KafkaUtils.generateTuples(_spoutConfig, toEmit.msg); if ((tups != null) && tups.iterator().hasNext()) { for (List
			
				tup : tups) {
                    collector.emit(tup, new KafkaMessageId(_partition, toEmit.offset));
                } break;
            } else {
                ack(toEmit.offset);
            }
        } if (!_waitingToEmit.isEmpty()) { return EmitState.EMITTED_MORE_LEFT;
        } else { return EmitState.EMITTED_END;
        }
    } private void fill() { long start = System.nanoTime();
        Long offset; // Are there failed tuples? If so, fetch those first. offset = this._failedMsgRetryManager.nextFailedMessageToRetry(); final boolean processingNewTuples = (offset == null); if (processingNewTuples) {
            offset = _emittedToOffset;
        }

        ByteBufferMessageSet msgs = null; try {
            msgs = KafkaUtils.fetchMessages(_spoutConfig, _consumer, _partition, offset);
        } catch (TopicOffsetOutOfRangeException e) {
            _emittedToOffset = KafkaUtils.getOffset(_consumer, _spoutConfig.topic, _partition.partition, kafka.api.OffsetRequest.EarliestTime());
            LOG.warn("Using new offset: {}", _emittedToOffset); // fetch failed, so don't update the metrics //fix bug [STORM-643] : remove outdated failed offsets if (!processingNewTuples) { // For the case of EarliestTime it would be better to discard // all the failed offsets, that are earlier than actual EarliestTime // offset, since they are anyway not there. // These calls to broker API will be then saved. Set omitted = this._failedMsgRetryManager.clearInvalidMessages(_emittedToOffset);

                LOG.warn("Removing the failed offsets that are out of range: {}", omitted);
            } return;
        } long end = System.nanoTime(); long millis = (end - start) / 1000000;
        _fetchAPILatencyMax.update(millis);
        _fetchAPILatencyMean.update(millis);
        _fetchAPICallCount.incr(); if (msgs != null) { int numMessages = 0; for (MessageAndOffset msg : msgs) { final Long cur_offset = msg.offset(); if (cur_offset < offset) { // Skip any old offsets. continue;
                } if (processingNewTuples || this._failedMsgRetryManager.shouldRetryMsg(cur_offset)) {
                    numMessages += 1; if (!_pending.containsKey(cur_offset)) {
                        _pending.put(cur_offset, System.currentTimeMillis());
                    }
                    _waitingToEmit.add(new MessageAndRealOffset(msg.message(), cur_offset));
                    _emittedToOffset = Math.max(msg.nextOffset(), _emittedToOffset); if (_failedMsgRetryManager.shouldRetryMsg(cur_offset)) { this._failedMsgRetryManager.retryStarted(cur_offset);
                    }
                }
            }
            _fetchAPIMessageCount.incrBy(numMessages);
        }
    } public void ack(Long offset) { if (!_pending.isEmpty() && _pending.firstKey() < offset - _spoutConfig.maxOffsetBehind) { // Too many things pending! _pending.headMap(offset - _spoutConfig.maxOffsetBehind).clear();
        }
        _pending.remove(offset); this._failedMsgRetryManager.acked(offset);
        numberAcked++;
    } public void fail(Long offset) { if (offset < _emittedToOffset - _spoutConfig.maxOffsetBehind) {
            LOG.info( "Skipping failed tuple at offset=" + offset + " because it's more than maxOffsetBehind=" + _spoutConfig.maxOffsetBehind + " behind _emittedToOffset=" + _emittedToOffset
            );
        } else {
            LOG.debug("failing at offset=" + offset + " with _pending.size()=" + _pending.size() + " pending and _emittedToOffset=" + _emittedToOffset);
            numberFailed++; if (numberAcked == 0 && numberFailed > _spoutConfig.maxOffsetBehind) { throw new RuntimeException("Too many tuple failures");
            } this._failedMsgRetryManager.failed(offset);
        }
    } public void commit() { long lastCompletedOffset = lastCompletedOffset(); if (_committedTo != lastCompletedOffset) {
            LOG.debug("Writing last completed offset (" + lastCompletedOffset + ") to ZK for " + _partition + " for topology: " + _topologyInstanceId);
            Map data = (Map) ImmutableMap.builder()
                    .put("topology", ImmutableMap.of("id", _topologyInstanceId, "name", _stormConf.get(Config.TOPOLOGY_NAME)))
                    .put("offset", lastCompletedOffset)
                    .put("partition", _partition.partition)
                    .put("broker", ImmutableMap.of("host", _partition.host.host, "port", _partition.host.port))
                    .put("topic", _spoutConfig.topic).build();
            _state.writeJSON(committedPath(), data);

            _committedTo = lastCompletedOffset;
            LOG.debug("Wrote last completed offset (" + lastCompletedOffset + ") to ZK for " + _partition + " for topology: " + _topologyInstanceId);
        } else {
            LOG.debug("No new offset for " + _partition + " for topology: " + _topologyInstanceId);
        }
    } private String committedPath() { return _spoutConfig.zkRoot + "/" + _spoutConfig.id + "/" + _partition.getId();
    } public long lastCompletedOffset() { if (_pending.isEmpty()) { return _emittedToOffset;
        } else { return _pending.firstKey();
        }
    } public Partition getPartition() { return _partition;
    } public void close() {
        commit();
        _connections.unregister(_partition.host, _partition.partition);
    } static class KafkaMessageId { public Partition partition; public long offset; public KafkaMessageId(Partition partition, long offset) { this.partition = partition; this.offset = offset;
        }
    }
}
				
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282

最后附上一张kafk保存在zk中的json信息截图  kafka保存在zk的json信息

顶 0
阅读(1824) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~