分类:
2012-02-15 10:37:07
原文地址:Python装饰器与面向切面编程 作者:anwaro
装饰器的定义很是抽象,我们来看一个小例子。
1 2 3 4 | def foo(): print 'in foo()' foo() |
这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:
1 2 3 4 5 6 7 8 | import time def foo(): start = time.clock() print 'in foo()' end = time.clock() print 'used:', end - start foo() |
很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。
怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?
1.2. 以不变应万变,是变也还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!
1 2 3 4 5 6 7 8 9 10 11 12 | import time def foo(): print 'in foo()' def timeit(func): start = time.clock() func() end =time.clock() print 'used:', end - start timeit(foo) |
看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。
1.3. 最大限度地少改动!既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #-*- coding: UTF-8 -*- import time def foo(): print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法 def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装 def wrapper(): start = time.clock() func() end =time.clock() print 'used:', end - start # 将包装后的函数返回 return wrapper foo = timeit(foo) foo() |
这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。
这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)
2. Python的额外支持2.1. 语法糖上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import time def timeit(func): def wrapper(): start = time.clock() func() end =time.clock() print 'used:', end - start return wrapper @timeit def foo(): print 'in foo()' foo() |
重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。
2.2. 内置的装饰器内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也非常低。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | class Rabbit(object): def __init__(self, name): self._name = name @staticmethod def newRabbit(name): return Rabbit(name) @classmethod def newRabbit2(cls): return Rabbit('') @property def name(self): return self._name |
这里定义的属性是一个只读属性,如果需要可写,则需要再定义一个setter:
1 2 3 | @name.setter def name(self, name): self._name = name |
functools模块提供了两个装饰器。这个模块是Python 2.5后新增的,一般来说大家用的应该都高于这个版本。但我平时的工作环境是2.4 T-T
2.3.1. wraps(wrapped[, assigned][, updated]):
这是一个很有用的装饰器。看过前一篇反射的朋友应该知道,函数是有几个特殊属性比如函数名,在被装饰后,上例中的函数名foo会变成包装函数的名字wrapper,如果你希望使用反射,可能会导致意外的结果。这个装饰器可以解决这个问题,它能将装饰过的函数的特殊属性保留。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import time import functools def timeit(func): @functools.wraps(func) def wrapper(): start = time.clock() func() end =time.clock() print 'used:', end - start return wrapper @timeit def foo(): print 'in foo()' foo() print foo.__name__ |
首先注意第5行,如果注释这一行,foo.__name__将是'wrapper'。另外相信你也注意到了,这个装饰器竟然带有一个参数。实际上,他还有另外两个可选的参数,assigned中的属性名将使用赋值的方式替换,而updated中的属性名将使用update的方式合并,你可以通过查看functools的源代码获得它们的默认值。对于这个装饰器,相当于wrapper = functools.wraps(func)(wrapper)。
2.3.2. total_ordering(cls):
这个装饰器在特定的场合有一定用处,但是它是在Python 2.7后新增的。它的作用是为实现了至少__lt__、__le__、__gt__、__ge__其中一个的类加上其他的比较方法,这是一个类装饰器。如果觉得不好理解,不妨仔细看看这个装饰器的源代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 53 def total_ordering(cls): 54 """Class decorator that fills in missing ordering methods""" 55 convert = { 56 '__lt__': [('__gt__', lambda self, other: other < self), 57 ('__le__', lambda self, other: not other < self), 58 ('__ge__', lambda self, other: not self < other)], 59 '__le__': [('__ge__', lambda self, other: other <= self), 60 ('__lt__', lambda self, other: not other <= self), 61 ('__gt__', lambda self, other: not self <= other)], 62 '__gt__': [('__lt__', lambda self, other: other > self), 63 ('__ge__', lambda self, other: not other > self), 64 ('__le__', lambda self, other: not self > other)], 65 '__ge__': [('__le__', lambda self, other: other >= self), 66 ('__gt__', lambda self, other: not other >= self), 67 ('__lt__', lambda self, other: not self >= other)] 68 } 69 roots = set(dir(cls)) & set(convert) 70 if not roots: 71 raise ValueError('must define at least one ordering operation: < > <= >=') 72 root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__ 73 for opname, opfunc in convert[root]: 74 if opname not in roots: 75 opfunc.__name__ = opname 76 opfunc.__doc__ = getattr(int, opname).__doc__ 77 setattr(cls, opname, opfunc) 78 return cls |
本文到这里就全部结束了,有空的话我会整理一个用于检查参数类型的装饰器的源代码放上来,算是一个应用吧 :)
转自:http://www.cnblogs.com/huxi/archive/2011/03/01/1967600.html