这几天是元旦假期,正好有时间写个实验程序验证一下新想法。原来写的这个 “
用局部边沿方向特征做图像识别目标检测” 检测效果还好,但是速度比较慢。这次的新算法可以快速计算图像的局部边沿方向。新算法首先计算图像的积分图,然后根据积分图计算图像的近似梯度场,在图像的边沿上梯度方向是法线方向,切线方向就是图像的局部边沿方向,这个算法比原来基于卷积的边沿方向算法快很多。
图像的近似梯度场图:
求近似梯度场的算法:
- inline HaarGradient img_haar_gradient_l4(IplImage *img_gray, CvMat* mat_Integral, CvPoint p)
- {
- int l = 4;
- double fix01,fix02,fix03,fix04;
- double sum;
- int x,y;
- sum=0.0;
- x = p.x - l;
- y = p.y - l;
- float ve = CV_IMAGE_ELEM(img_gray, uchar, y, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x+1);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y+1, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y+1, x+1);
- sum+=ve;
- fix01 = sum;
- sum=0.0;
- x = p.x - l;
- y = p.y + l;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x+1);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y-1, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y-1, x-1);
- sum+=ve;
- fix02 = sum;
- sum=0.0;
- x = p.x + l;
- y = p.y + l;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x-1);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y-1, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y-1, x-1);
- sum+=ve;
- fix03 = sum;
- sum=0.0;
- x = p.x + l;
- y = p.y - l;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y, x-1);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y+1, x);
- sum+=ve;
- ve = CV_IMAGE_ELEM(img_gray, uchar, y+1, x-1);
- sum+=ve;
- fix04 = sum;
- HaarGradient grad;
- int x1 = p.x - l, x2 = p.x;
- int y1 = p.y - l, y2 = p.y + l;
- float *p_x1y1,*p_x1y2,*p_x2y1,*p_x2y2;
- double inte_x1y1,inte_x1y2,inte_x2y1,inte_x2y2;
- p_x1y1 = (float*)cvPtr2D(mat_Integral, y1, x1);
- p_x1y2 = (float*)cvPtr2D(mat_Integral, y2, x1);
- p_x2y1 = (float*)cvPtr2D(mat_Integral, y1, x2);
- p_x2y2 = (float*)cvPtr2D(mat_Integral, y2, x2);
- double inte_xy01 = *p_x2y2 - *p_x1y2 - *p_x2y1 + *p_x1y1 - fix01 - fix02;
- x1 = p.x, x2 = p.x + l;
- y1 = p.y - l, y2 = p.y + l;
- p_x1y1 = (float*)cvPtr2D(mat_Integral, y1, x1);
- p_x1y2 = (float*)cvPtr2D(mat_Integral, y2, x1);
- p_x2y1 = (float*)cvPtr2D(mat_Integral, y1, x2);
- p_x2y2 = (float*)cvPtr2D(mat_Integral, y2, x2);
- double inte_xy02 = *p_x2y2 - *p_x1y2 - *p_x2y1 + *p_x1y1 - fix03 - fix04;
- double haar_horizontal = inte_xy01 - inte_xy02;
- x1 = p.x - l, x2 = p.x + l;
- y1 = p.y - l, y2 = p.y;
- *p_x1y1,*p_x1y2,*p_x2y1,*p_x2y2;
- inte_x1y1,inte_x1y2,inte_x2y1,inte_x2y2;
- p_x1y1 = (float*)cvPtr2D(mat_Integral, y1, x1);
- p_x1y2 = (float*)cvPtr2D(mat_Integral, y2, x1);
- p_x2y1 = (float*)cvPtr2D(mat_Integral, y1, x2);
- p_x2y2 = (float*)cvPtr2D(mat_Integral, y2, x2);
- inte_xy01 = *p_x2y2 - *p_x1y2 - *p_x2y1 + *p_x1y1 - fix01 - fix04;
- x1 = p.x - l, x2 = p.x + l;
- y1 = p.y, y2 = p.y + l;
- p_x1y1 = (float*)cvPtr2D(mat_Integral, y1, x1);
- p_x1y2 = (float*)cvPtr2D(mat_Integral, y2, x1);
- p_x2y1 = (float*)cvPtr2D(mat_Integral, y1, x2);
- p_x2y2 = (float*)cvPtr2D(mat_Integral, y2, x2);
- inte_xy02 = *p_x2y2 - *p_x1y2 - *p_x2y1 + *p_x1y1 - fix02 - fix03;
- double haar_vertical = inte_xy02 - inte_xy01;
- double haar_vh = fabs(haar_vertical/haar_horizontal);
- //grad.angle = atan2(haar_vertical, haar_horizontal);
- grad.angle = (CV_PI/2.0 * haar_vh) / (1.0 + haar_vh); //(pi/2 * y) / (1 + y)
- if (haar_vertical < 0.0 && haar_horizontal < 0.0) grad.angle += CV_PI;
- if (haar_vertical < 0.0 && haar_horizontal > 0.0) grad.angle = 2*CV_PI - grad.angle;
- if (haar_vertical > 0.0 && haar_horizontal < 0.0) grad.angle = CV_PI - grad.angle;
- //if (haar_vertical < 0.0) grad.angle += CV_PI;
- grad.mod = sqrt(haar_vertical*haar_vertical + haar_horizontal*haar_horizontal);
- if (p.x == 50 && p.y == 50)
- {
- std::cout << "haar_vertical, haar_horizontal " << haar_vertical << ", " << haar_horizontal << std::endl;
- std::cout << " haar_vh = " << haar_vh;
- std::cout << " ang = " << grad.angle/CV_PI * 180.0 << std::endl;
- }
- return grad;
- }
根据梯度可以得到局部边沿方向图,和原来的基于卷积的算法结果一致。
这样特征提取问题就解决了,下一步还要改进匹配算法,提高匹配效率,加强匹配算法的弹性适应一定的视角变化,试试分组投票等算法,不过元旦假期马上就结束了,只能以后放假再说了,估计春节假期能写完新程序。
2013.01.03
zhujiang
阅读(3840) | 评论(0) | 转发(0) |