Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1978907
  • 博文数量: 185
  • 博客积分: 10707
  • 博客等级: 上将
  • 技术积分: 1777
  • 用 户 组: 普通用户
  • 注册时间: 2008-09-19 17:31
文章分类

全部博文(185)

文章存档

2014年(1)

2012年(6)

2011年(27)

2010年(13)

2009年(75)

2008年(63)

分类: LINUX

2008-11-25 22:27:55

--------------------------------------------
本文系本站原创,欢迎转载!
转载请注明出处:http://zhiqiang0071.cublog.cn
--------------------------------------------

针对该gpio.c的硬件手册是SPRUE25.pdf,可到TI的网站()上下载,或直接在谷歌里搜索。
以下是两个文件gpio.c和gpio.h的浅析。

gpio.c


/*
 * TI DaVinci GPIO Support
 *
 * Copyright (c) 2006 David Brownell
 * Copyright (c) 2007, MontaVista Software, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/bitops.h>

#include <asm/irq.h>
#include <asm/io.h>
#include <asm/hardware/clock.h>

#include <asm/arch/irqs.h>
#include <asm/arch/hardware.h>
#include <asm/arch/gpio.h>
#include <asm/arch/cpu.h>

#include <asm/mach/irq.h>

/*
 该文件实现了gpio的各种应用功能和向内核注册gpio的中断例程等功能。
 用户的驱动程序可调用gpio_request和gpio_free使用或释放该gpio,
 可以调用gpio_direction_input和gpio_direction_output函数设置gpio输入输出方向,
 调用gpio_get_value和gpio_set_value获取设置值。


逻辑上各个gpio都有自己的中断号,这样做的目的是使得驱动程序能通过request_irq()函数来申请该gpio的中断,而实际上除了gpio0-gpio7外,其他gpio都是共享四个gpiobank中断号的。通过gpio_irq_handler例程实现了共享中断号的目的。

*/

static DEFINE_SPINLOCK(gpio_lock);

/* 总共有DAVINCI_N_GPIO(71)个gpio引脚,故使用相应多的bit来记录这些引脚的使用状态 */
static DECLARE_BITMAP(gpio_in_use, DAVINCI_N_GPIO);

/*
 申请一个gpio,其实就是检查该gpio是否空闲,如果空闲就可以使用并将该gpio相应的bit置位
(在gpio_in_use中)。
*/

int gpio_request(unsigned gpio, const char *tag)
{
    if (gpio >= DAVINCI_N_GPIO)
        return -EINVAL;

    if (test_and_set_bit(gpio, gpio_in_use))
        return -EBUSY;

    return 0;
}
EXPORT_SYMBOL(gpio_request);

/*
 释放一个gpio,其实就是清除gpio相应的控制bit位(在gpio_in_use中)。
*/

void gpio_free(unsigned gpio)
{
    if (gpio >= DAVINCI_N_GPIO)
        return;

    clear_bit(gpio, gpio_in_use);
}
EXPORT_SYMBOL(gpio_free);

/* 获得gpio_controller结构体指针,gpio_controller结构体是gpio的核心控制单元,里面包含
 gpio的设置和数据寄存器。该结构体和__gpio_to_controller函数在/include/asm-arm/
 arch-davinci/gpio.h中定义,具体如下:
struct gpio_controller {
    u32    dir;
    u32    out_data;
    u32    set_data;
    u32    clr_data;
    u32    in_data;
    u32    set_rising;
    u32    clr_rising;
    u32    set_falling;
    u32    clr_falling;
    u32    intstat;
};

static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
    void *__iomem ptr;

    if (gpio >= DAVINCI_N_GPIO)
        return NULL;

    if (gpio < 32)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
    else if (gpio < 64)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
    else if (gpio < 96)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
    else
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);

    return ptr;
}
 由上面的定义和ti的SPRUE25.pdf手册可以看出,__gpio_to_controller函数返回的是
 gpio_controller结构体到第一个成员dir的虚拟地址。获取了这个结构体指针后,
 便可以控制相应的gpio了。dm644x共有71个gpio,
 所以使用三个gpio_controller结构体控制,关于这个后面会由更详细的分析,
*/

/* create a non-inlined version */
static struct gpio_controller *__iomem gpio2controller(unsigned gpio)
{
    return __gpio_to_controller(gpio);
}

/*
 向某个gpio设置值,0或1。如果向gpio写1,则向set_data寄存器相应的位置1,如果写0,
 则向clr_data寄存器相应的位置1.__gpio_mask函数在gpio.h中定义,定义如下,
 static inline u32 __gpio_mask(unsigned gpio)
 {
    return 1 << (gpio % 32);
 }
 因为71个引脚由3个结构体控制,第一个控制前32个gpio,第二个控制次32个gpio,
 最后一个控制剩余的7个gpio,故__gpio_mask函数的作用是找到在其相应控制结构体里的偏移数,
 比如gpio34,那么其由第二个结构体控制,在这个机构体里的偏移是3(从0开始算,就是第二位)。
 使用这个函数之前,必须确认该gpio设置成输出模式。
*/

/*
 * Assuming the pin is muxed as a gpio output, set its output value.
 */

void __gpio_set(unsigned gpio, int value)
{
    struct gpio_controller *__iomem g = gpio2controller(gpio);

    // 设置gpio的值

    __raw_writel(__gpio_mask(gpio), value ? &g->set_data : &g->clr_data);
}
EXPORT_SYMBOL(__gpio_set);

/*
 通过读取in_data寄存器相应该gpio的位来读取gpio的值。
 使用这个函数之前,必须确认该gpio设置成输入模式,否则获得到值不可预料。
 */

/*
 * Read the pin's value (works even if it's set up as output);
 * returns zero/nonzero.
 *
 * Note that changes are synched to the GPIO clock, so reading values back
 * right after you've set them may give old values.
 */

int __gpio_get(unsigned gpio)
{
    struct gpio_controller *__iomem g = gpio2controller(gpio);
    
    /* 读取gpio的值,!!的目的是使得返回的值为0或1.*/
    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));    
}                                                                                                                  }
EXPORT_SYMBOL(__gpio_get);

/*
 通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
 该函数是设置成输入,故设置dir寄存器为1.
 正如应为所说的,必须确认该引脚是作为gpio功能,而不是某个模块到功能,比如spi。通过PINMUX0
 和PINMUX1两个寄存器来设置。
*/

/*--------------------------------------------------------------------------*/

/*
 * board setup code *MUST* set PINMUX0 and PINMUX1 as
 * needed, and enable the GPIO clock.
 */

int gpio_direction_input(unsigned gpio)
{
    struct gpio_controller *__iomem g = gpio2controller(gpio);
    u32 temp;
    u32 mask;

    if (!g)
        return -EINVAL;

    spin_lock(&gpio_lock);
    mask = __gpio_mask(gpio);
    temp = __raw_readl(&g->dir);
    temp |= mask;    // 设置成1

    __raw_writel(temp, &g->dir);    // 设置该gpio为输入

    spin_unlock(&gpio_lock);
    return 0;
}
EXPORT_SYMBOL(gpio_direction_input);

/*
 通过dir寄存器相应该gpio的位来设置gpio输入输出方向,为0,则设置成输出,为1,则设置出输入。
 该函数是设置成输出,故设置dir寄存器为0.
 value参数用于选择gpio设置成输出后该gpio输出的值。
*/

int gpio_direction_output(unsigned gpio, int value)
{
    struct gpio_controller *__iomem g = gpio2controller(gpio);
    u32 temp;
    u32 mask;

    if (!g)
        return -EINVAL;

    spin_lock(&gpio_lock);
    mask = __gpio_mask(gpio);
    temp = __raw_readl(&g->dir);
    temp &= ~mask;    // 设置成0

    
    //设置该gpio输出值

    __raw_writel(mask, value ? &g->set_data : &g->clr_data);
    __raw_writel(temp, &g->dir);    // 设置gpio为输出

    spin_unlock(&gpio_lock);
    return 0;
}
EXPORT_SYMBOL(gpio_direction_output);

/*
 向gpio设置值,0或1。
*/

void gpio_set_value(unsigned gpio, int value)
{
    if (__builtin_constant_p(value)) {
        struct gpio_controller *__iomem g;
        u32 mask;

        if (gpio >= DAVINCI_N_GPIO)
            __error_inval_gpio();

        g = __gpio_to_controller(gpio);
        mask = __gpio_mask(gpio);
        if (value)
            __raw_writel(mask, &g->set_data);    // 该gpio输出高

        else
            __raw_writel(mask, &g->clr_data);    // 该gpio输出低

        return;
    }

    __gpio_set(gpio, value);
}
EXPORT_SYMBOL(gpio_set_value);

/*
 读取gpio的值,0或1.
*/

int gpio_get_value(unsigned gpio)
{
    struct gpio_controller *__iomem g;

    if (!__builtin_constant_p(gpio))/* 判断该gpio值是否为编译时常数,如果是常数,
                                     函数返回 1,否则返回 0 */

        return __gpio_get(gpio);

    if (gpio >= DAVINCI_N_GPIO)
        return __error_inval_gpio();

    g = __gpio_to_controller(gpio);
    
    // 读取该gpio的值

    return !!(__gpio_mask(gpio) & __raw_readl(&g->in_data));
}
EXPORT_SYMBOL(gpio_get_value);

/*
 * We expect irqs will normally be set up as input pins, but they can also be
 * used as output pins ... which is convenient for testing.
 *
 * NOTE: GPIO0..GPIO7 also have direct INTC hookups, which work in addition
 * to their GPIOBNK0 irq (but with a bit less overhead). But we don't have
 * a good way to hook those up ...
 *
 * All those INTC hookups (GPIO0..GPIO7 plus five IRQ banks) can also
 * serve as EDMA event triggers.
 */


/*
 禁止相应该irq的gpio的中断。每个gpio都可以作为中断的来源,其中gpio0-gpio7是独立的中断来源,
 也就是分配独立的中断号,其他gpio则共用5个GPIOBNK中断线。其优先级可以在board-evm.c
 中设置(已经介绍过)。在dm644x平台上,中断是电平边缘触发的,禁止中断其实就是既不设置
 上升沿触发,也不设置下降沿触发。
*/

static void gpio_irq_disable(unsigned irq)
{
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);
    u32 mask = __gpio_mask(irq_to_gpio(irq));

    __raw_writel(mask, &g->clr_falling);    // 清除下降沿触发

    __raw_writel(mask, &g->clr_rising);        // 清除上升沿触发

}

/*
 中断使能。
 在dm644x平台上,中断是电平边缘触发的,其实就是设置为上升沿或下降沿中断。
*/

static void gpio_irq_enable(unsigned irq)
{
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);
    u32 mask = __gpio_mask(irq_to_gpio(irq));

    // 如果先前为下降沿中断,则使能为下降沿中断

    if (irq_desc[irq].status & IRQT_FALLING)
        __raw_writel(mask, &g->set_falling);
    
    // 如果先前为上升沿中断,则使能为上升沿中断

    if (irq_desc[irq].status & IRQT_RISING)    
        __raw_writel(mask, &g->set_rising);
}

/*
 设置中断类型。
 在dm644x平台上,中断有上升沿和下降沿两种触发方式。
*/

static int gpio_irq_type(unsigned irq, unsigned trigger)
{
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);
    u32 mask = __gpio_mask(irq_to_gpio(irq));

    if (trigger & ~(IRQT_FALLING | IRQT_RISING))
        return -EINVAL;

    irq_desc[irq].status &= ~IRQT_BOTHEDGE;
    irq_desc[irq].status |= trigger;

    __raw_writel(mask, (trigger & IRQT_FALLING)
         ? &g->set_falling : &g->clr_falling);     // 设置为下降沿触发

    __raw_writel(mask, (trigger & IRQT_RISING)
         ? &g->set_rising : &g->clr_rising);    // 设置为上升沿触发

    return 0;
}

/*
 该结构体用于注册到所有irq的中断描述结构体中(struct irqdesc),
 而所有中断描述结构体定义成一个全局数组irq_desc 。
 */

static struct irqchip gpio_irqchip = {
    .unmask        = gpio_irq_enable, /* 用于使能中断,
                                     在enable_irq()等内核函数中会用到。*/
    
    .mask        = gpio_irq_disable,/* 用于禁止中断,
                                     在disable_irq()等内核函数中会用到。*/

    .type        = gpio_irq_type, /* 用于设置中断类型,
                                     在set_irq_type()内核函数中会用到。*/

};

/*
 该函数将在下面的davinci_gpio_irq_setup中使用,将被注册到五个gpio bank中断的
 irq_desc结构中,目的是处理所有级联的gpio中断。所谓级联的中断, 就是指有n个中断
 共用同一个中断线。
 在dm644x平台中,除了gpio0-gpio7外,其他63个gpio都共用五个gpiobank中断线,在这里,
 gpio0-gpio7也被注册到gpiobank中断线,但实际上他们会在irq.c中重新注册。其中,gpio0-gpio15共用IRQ_GPIOBNK0(56)中断线,gpio16-gpio31共用
 IRQ_GPIOBNK1(57)中断线,gpio32-gpio47共用IRQ_GPIOBNK2(58)中断线,
 gpio48-gpio63共用IRQ_GPIOBNK4(59)中断线,gpio64-gpio70共用
 IRQ_GPIOBNK5(60)中断线,
 因为寄存器是32位的,所以实际上只有三组寄存器,第一组包含bank0和bank1,
 也就是gpio0-gpio31,第二组包含bank2和bank3,也就是gpio32-gpio63,
 第三组包含bank4和bank5,也就是gpio64-gpio70,剩余了25个位没有使用。
*/

static void
gpio_irq_handler(unsigned irq, struct irqdesc *desc, struct pt_regs *regs)
{
    struct gpio_controller *__iomem g = get_irq_chipdata(irq);
    u32 mask = 0xffff;

    /* we only care about one bank */
    // 如果bank中断线是寄数,则说明该中断的中断状态位在INTSTATn寄存器的高16位

    if (irq & 1)
        mask <<= 16;

    /* temporarily mask (level sensitive) parent IRQ */
    desc->chip->ack(irq);// 该ack函数会在arch/arm/mach-davinci/irq.c中注册。

    while (1) {
        u32        status;
        struct irqdesc    *gpio;
        int        n;
        int        res;

        /* ack any irqs */
        /*gpio中断发生后,硬件会在INTSTATn寄存器中置位相应位,
         以备程序查询,确定是哪个gpio*/

        status = __raw_readl(&g->intstat) & mask;
        if (!status)
            break;
        __raw_writel(status, &g->intstat);    // 向该位写1清除

        if (irq & 1)
            status >>= 16;

        /* now demux them to the right lowlevel handler */
        // 从下面的davinci_gpio_irq_setup函数可以看出来以下程序的运作。

        n = (int)get_irq_data(irq);    // 获取该bank对应的第一个gpio号

        gpio = &irq_desc[n];    // 获取该bank第一个gpio号对应的中断描述符

        while (status) {    // 该bank可能有多个gpio发生了中断

            res = ffs(status);    // 获取第一个发生了中断的位(1-32)

            n += res;    /* 获得该gpio的中断线(系统实际上只有64(0-63)个中断线,
                        但那些共用的gpio的中断也有自己的断描述符和中断线(从64开始),
                       
这样做的目的是使得驱动程序能通过request_irq()函数来申请该gpio的中断。*/
            gpio += res;    //     获得该gpio的中断描述符

            
            /* 调用下面注册的do_simple_IRQ例程
             其又会调用用户通过request_irq()
             注册的中断例程
            */

            desc_handle_irq(n - 1, gpio - 1, regs);    
            status >>= res;        
        }
    }
    desc->chip->unmask(irq);    // 打开该irq中断线

    /* now it may re-trigger */
}

/*
 * NOTE: for suspend/resume, probably best to make a sysdev (and class)
 * with its suspend/resume calls hooking into the results of the set_wake()
 * calls ... so if no gpios are wakeup events the clock can be disabled,
 * with outputs left at previously set levels, and so that VDD3P3V.IOPWDN0
 * can be set appropriately for GPIOV33 pins.
 */

/*
 注册gpio中断例程到内核中,并初始化了一些寄存器。
 该函数将会被board_evm.c(其浅析已经发表)中的evm_init()函数调用。具体调用过程如下:
 start_kernel()-->setup_arch()-->init_machine = mdesc->init_machine
 (init_machine是个全局函数指针变量,其指向的就是已经注册到机器描述符里evm_init());
 调用函数指针init_machine()的例程是customize_machine(),其定义为
 arch_initcall(customize_machine),所以,接下来的调用过程是:
 start_kernel()-->do_basic_setup()-->do_initcalls()-->customize_machine()-->
 init_machine()(也就是evm_init())-->davinci_gpio_irq_setup。
 从上可以看出经历了两个过程,才调用davinci_gpio_irq_setup例程来初始化gpio中断。
*/

int __init davinci_gpio_irq_setup(void)
{
    unsigned    gpio, irq, bank, banks;
    struct clk    *clk;

    clk = clk_get(NULL, "gpio");    // 获取时钟

    if (IS_ERR(clk)) {
        printk(KERN_ERR "Error %ld getting gpio clock?\n",
         PTR_ERR(clk));
        return 0;
    }

    clk_enable(clk);    // 使能gpio时钟并打开该模块电源


    for (gpio = 0, irq = gpio_to_irq(0), bank = (cpu_is_davinci_dm355() ?
     IRQ_DM355_GPIOBNK0 : (cpu_is_davinci_dm6467() ?
     IRQ_DM646X_GPIOBNK0 : IRQ_GPIOBNK0));    // dm644x的IRQ_GPIOBNK0(56)

     gpio < DAVINCI_N_GPIO; bank++) {    // dm644x的DAVINCI_N_GPIO(71)

        struct gpio_controller    *__iomem g = gpio2controller(gpio);
        unsigned        i;

        // 关该bank所有gpio的中断

        __raw_writel(~0, &g->clr_falling);
        __raw_writel(~0, &g->clr_rising);

        /* set up all irqs in this bank */
        // 同一个bank的所有gpio共用一个中断例程gpio_irq_handler

        set_irq_chained_handler(bank, gpio_irq_handler);
        set_irq_chipdata(bank, g);
        set_irq_data(bank, (void *)irq);

        for (i = 0; i < 16 && gpio < DAVINCI_N_GPIO;
         i++, irq++, gpio++) {
            set_irq_chip(irq, &gpio_irqchip);    /* 注册用于gpio中断禁止、设能
                                                 和类型选择的回调例程 */

            set_irq_chipdata(irq, g);            // 保存控制结构体(寄存器)的地址

            set_irq_handler(irq, do_simple_IRQ);/* 为每个gpio中断设置同一个中
                                                    断例程do_simple_IRQ*/

            set_irq_flags(irq, IRQF_VALID);        // fiq中断有效

        }
    }
/*    
一个共用bank中断线的gpio中断发生后的大致的流程是:
 --> gpio_irq_handler --> do_simple_IRQ --> __do_irq -->
 action->handler(用户使用request_irq()注册的中断例程)
*/

    /* BINTEN -- per-bank interrupt enable. genirq would also let these
     * bits be set/cleared dynamically.
     */

    if (cpu_is_davinci_dm355())
        banks = 0x3f;
    else
        banks = 0x1f;
    
    // 向BINTEN寄存器写入0x1f(共5个位,每个位控制1个bank),打开所有的bank中断

    __raw_writel(banks, (void *__iomem)
         IO_ADDRESS(DAVINCI_GPIO_BASE + 0x08));

    printk(KERN_INFO "DaVinci: %d gpio irqs\n", irq - gpio_to_irq(0));

    return 0;
}


gpio.h

/*
 * TI DaVinci GPIO Support
 *
 * Copyright (c) 2006 David Brownell
 * Copyright (c) 2007, MontaVista Software, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */


#ifndef    __DAVINCI_GPIO_H
#define    __DAVINCI_GPIO_H

/*
 * basic gpio routines
 *
 * board-specific init should be done by arch/.../.../board-XXX.c (maybe
 * initializing banks together) rather than boot loaders; kexec() won't
 * go through boot loaders.
 *
 * the gpio clock will be turned on when gpios are used, and you may also
 * need to pay attention to PINMUX0 and PINMUX1 to be sure those pins are
 * used as gpios, not with other peripherals.
 *
 * GPIOs are numbered 0..(DAVINCI_N_GPIO-1). For documentation, and maybe
 * for later updates, code should write GPIO(N) or:
 * - GPIOV18(N) for 1.8V pins, N in 0..53; same as GPIO(0)..GPIO(53)
 * - GPIOV33(N) for 3.3V pins, N in 0..17; same as GPIO(54)..GPIO(70)
 *
 * For GPIO IRQs use gpio_to_irq(GPIO(N)) or gpio_to_irq(GPIOV33(N)) etc
 * for now, that's != GPIO(N)
 */

#define    GPIO(X)        (X)        /* 0 <= X <= 70 */
#define    GPIOV18(X)    (X)        /* 1.8V i/o; 0 <= X <= 53 */
#define    GPIOV33(X)    ((X)+54)    /* 3.3V i/o; 0 <= X <= 17 */

/*
 寄存器都是32位到,每位对应一个gpio。
*/

struct gpio_controller {
    u32    dir;            // gpio方向设置寄存器

    u32    out_data;        // gpio设置为输出时,表示输出状态(0或1)

    u32    set_data;        // gpio设置为输出时,用于输出高电平

    u32    clr_data;        // gpio设置为输出时,用于输出低电平

    u32    in_data;        // gpio设置为输入时,用于读取输入值

    u32    set_rising;        // gpio中断上升沿触发设置

    u32    clr_rising;        // gpio中断上升沿触发清除

    u32    set_falling;    // gpio中断下降沿触发设置

    u32    clr_falling;    // gpio中断下降沿触发清除

    u32    intstat;        // gpio中断状态位,由硬件设置,可读取,写1时清除。

};

/* The __gpio_to_controller() and __gpio_mask() functions inline to constants
 * with constant parameters; or in outlined code they execute at runtime.
 *
 * You'd access the controller directly when reading or writing more than
 * one gpio value at a time, and to support wired logic where the value
 * being driven by the cpu need not match the value read back.
 *
 * These are NOT part of the cross-platform GPIO interface
 */

static inline struct gpio_controller *__iomem
__gpio_to_controller(unsigned gpio)
{
    void *__iomem ptr;

    if (gpio >= DAVINCI_N_GPIO)
        return NULL;

    if (gpio < 32)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x10);
    else if (gpio < 64)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x38);
    else if (gpio < 96)
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x60);
    else
        ptr = (void *__iomem)IO_ADDRESS(DAVINCI_GPIO_BASE + 0x88);

    return ptr;
}

static inline u32 __gpio_mask(unsigned gpio)
{
    return 1 << (gpio % 32);
}

/* The get/set/clear functions will inline when called with constant
 * parameters, for low-overhead bitbanging. Illegal constant parameters
 * cause link-time errors.
 *
 * Otherwise, calls with variable parameters use outlined functions.
 */

extern int __error_inval_gpio(void);

extern void __gpio_set(unsigned gpio, int value);
extern int __gpio_get(unsigned gpio);

/* Returns zero or nonzero; works for gpios configured as inputs OR
 * as outputs.
 *
 * NOTE: changes in reported values are synchronized to the GPIO clock.
 * This is most easily seen after calling gpio_set_value() and then immediatly
 * gpio_get_value(), where the gpio_get_value() would return the old value
 * until the GPIO clock ticks and the new value gets latched.
 */

extern int gpio_get_value(unsigned gpio);
extern void gpio_set_value(unsigned gpio, int value);


/* powerup default direction is IN */
extern int gpio_direction_input(unsigned gpio);
extern int gpio_direction_output(unsigned gpio, int value);

#include <asm-generic/gpio.h>    /* cansleep wrappers */

extern int gpio_request(unsigned gpio, const char *tag);
extern void gpio_free(unsigned gpio);

static inline int gpio_to_irq(unsigned gpio)
{
    return DAVINCI_N_AINTC_IRQ + gpio;
}

static inline int irq_to_gpio(unsigned irq)
{
    return irq - DAVINCI_N_AINTC_IRQ;
}

#endif                /* __DAVINCI_GPIO_H */

阅读(3473) | 评论(2) | 转发(1) |
给主人留下些什么吧!~~

chinaunix网友2010-11-23 23:21:15

/* The __gpio_to_controller() and __gpio_mask() functions inline to constants * with constant parameters; or in outlined code they execute at runtime. * * You'd access the controller directly when reading or writing more than * one gpio value at a time, and to support wired logic where the value * being driven by the cpu need not match the value read back. * * These are NOT part of the cross-platform GPIO interface */ static inline struct gpio_controller *__iomem __gpio_to_cont

chinaunix网友2008-12-11 14:24:38

恩。好文章 顶一下