Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1509512
  • 博文数量: 228
  • 博客积分: 1698
  • 博客等级: 上尉
  • 技术积分: 3241
  • 用 户 组: 普通用户
  • 注册时间: 2008-12-24 21:49
个人简介

Linux

文章分类

全部博文(228)

文章存档

2017年(1)

2016年(43)

2015年(102)

2014年(44)

2013年(5)

2012年(30)

2011年(3)

分类: LINUX

2015-11-05 22:00:10

转自:http://blog.sina.com.cn/s/blog_6d579ff40100wi7p.html

在设置了“取处理程序”的情况下, 变量也可以选择将其值容器用作缓存,这样在多次读取变量的时候,就只需要调用“取处理程序”计算一次。我们下面就来看一个这样的例子:

点击(此处)折叠或打开

  1.     map $args $foo {
  2.         default 0;
  3.         debug 1;
  4.     }
  5.  
  6.     server {
  7.         listen 8080;
  8.  
  9.         location /test {
  10.             set $orig_foo $foo;
  11.             set $args debug;
  12.             echo "orginal foo: $orig_foo";
  13.             echo "foo: $foo";
  14.         }
  15.     }

这里首次用到了标准 ngx_map 模块的 map 配置指令,我们有必要在此介绍一下。map 在英文中除了“地图”之外,也有“映射”的意思。比方说,中学数学里讲的“函数”就是一种“映射”。而 Nginx 的这个 map 指令就可以用于定义两个 Nginx 变量之间的映射关系,或者说是函数关系。回到上面这个例子,我们用 map 指令定义了用户变量 $foo 与 $args 内建变量之间的映射关系。特别地,用数学上的函数记法 y = f(x) 来说,我们的 $args 就是“自变量” x,而 $foo 则是“因变量” y,即 $foo 的值是由 $args 的值来决定的,或者按照书写顺序可以说,我们将 $args 变量的值映射到了 $foo 变量上。现在我们再来看 map 指令定义的映射规则:

点击(此处)折叠或打开

  1.     map $args $foo {
  2.         default 0;
  3.         debug 1;
  4.     }

花括号中第一行的 default 是一个特殊的匹配条件,即当其他条件都不匹配的时候,这个条件才匹配。当这个默认条件匹配时,就把“因变量” $foo 映射到值 0. 而花括号中第二行的意思是说,如果“自变量” $args 精确匹配了 debug 这个字符串,则把“因变量” $foo 映射到值 1. 将这两行合起来,我们就得到如下完整的映射规则:当 $args 的值等于 debug 的时候,$foo 变量的值就是 1,否则 $foo 的值就为 0.

明白了 map 指令的含义,再来看 location /test. 在那里,我们先把当前 $foo 变量的值保存在另一个用户变量 $orig_foo 中,然后再强行把 $args 的值改写为 debug,最后我们再用 echo 指令分别输出 $orig_foo 和 $foo 的值。

从逻辑上看,似乎当我们强行改写 $args 的值为 debug 之后,根据先前的 map 映射规则,$foo 变量此时的值应当自动调整为字符串 1, 而不论 $foo 原先的值是怎样的。然而测试结果并非如此:

点击(此处)折叠或打开

  1.     $ curl ''
  2.     original foo: 0
  3.     foo: 0

第一行输出指示 $orig_foo 的值为 0,这正是我们期望的:上面这个请求并没有提供 URL 参数串,于是 $args 最初的取值就是空,再根据我们先前定义的映射规则,$foo 变量在第一次被读取时的值就应当是 0(即匹配默认的那个 default 条件)。

而第二行输出显示,在强行改写 $args 变量的值为字符串 debug 之后,$foo 的条件仍然是 0 ,这显然不符合映射规则,因为当 $args 为 debug 时,$foo 的值应当是 1. 这究竟是为什么呢?

其实原因很简单,那就是 $foo 变量在第一次读取时,根据映射规则计算出的值被缓存住了。刚才我们说过,Nginx 模块可以为其创建的变量选择使用值容器,作为其“取处理程序”计算结果的缓存。显然,ngx_map 模块认为变量间的映射计算足够昂贵,需要自动将因变量的计算结果缓存下来,这样在当前请求的处理过程中如果再次读取这个因变量,Nginx 就可以直接返回缓存住的结果,而不再调用该变量的“取处理程序”再行计算了。

为了进一步验证这一点,我们不妨在请求中直接指定 URL 参数串为 debug:

点击(此处)折叠或打开

  1.     $ curl '?debug'
  2.     original foo: 1
  3.     foo: 1

我们看到,现在 $orig_foo 的值就成了 1,因为变量 $foo 在第一次被读取时,自变量 $args 的值就是 debug,于是按照映射规则,“取处理程序”计算返回的值便是 1. 而后续再读取 $foo 的值时,就总是得到被缓存住的 1 这个结果,而不论 $args 后来变成什么样了。

map 指令其实是一个比较特殊的例子,因为它可以为用户变量注册“取处理程序”,而且用户可以自己定义这个“取处理程序”的计算规则。当然,此规则在这里被限定为与另一个变量的映射关系。同时,也并非所有使用了“取处理程序”的变量都会缓存结果,例如我们前面在 (三) 中已经看到 $arg_XXX 并不会使用值容器进行缓存。

类似 ngx_map 模块,标准的 ngx_geo 等模块也一样使用了变量值的缓存机制。

在上面的例子中,我们还应当注意到 map 指令是在 server 配置块之外,也就是在最外围的 http 配置块中定义的。很多读者可能会对此感到奇怪,毕竟我们只是在 location /test 中用到了它。这倒不是因为我们不想把 map 语句直接挪到 location 配置块中,而是因为 map 指令只能在 http 块中使用!

很多 Nginx 新手都会担心如此“全局”范围的 map 设置会让访问所有虚拟主机的所有 location 接口的请求都执行一遍变量值的映射计算,然而事实并非如此。前面我们已经了解到 map 配置指令的工作原理是为用户变量注册 “取处理程序”,并且实际的映射计算是在“取处理程序”中完成的,而“取处理程序”只有在该用户变量被实际读取时才会执行(当然,因为缓存的存在,只在请求生命期中的第一次读取中才被执行),所以对于那些根本没有用到相关变量的请求来说,就根本不会执行任何的无用计算。

这种只在实际使用对象时才计算对象值的技术,在计算领域被称为“惰性求值”(lazy evation)。提供“惰性求值” 语义的编程语言并不多见,最经典的例子便是 Haskell. 与之相对的便是“主动求值” (eager evaluation)。我们有幸在 Nginx 中也看到了“惰性求值”的例子,但“主动求值”语义其实在 Nginx 里面更为常见,例如下面这行再普通不过的 set 语句:

点击(此处)折叠或打开

  1. set $b "$a,$a"
这里会在执行 set 规定的赋值操作时,“主动”地计算出变量 $b 的值,而不会将该求值计算延缓到变量 $b 实际被读取的时候。

前面已经了解到变量值容器的生命期是与请求绑定的,但是我当时有意避开了“请求”的正式定义。大家应当一直默认这里的“请求”都是指客户端发起的 HTTP 请求。其实在  世界里有两种类型的“请求”,一种叫做“主请求”(main request),而另一种则叫做“子请求”(subrequest)。我们先来介绍一下它们。所谓“主请求”,是由 HTTP 客户端从 Nginx 外部发起的请求。我们前面见到的所有例子都只涉及到“主请求”,包括 那两个使用 echo_exec 和 rewrite 指令发起“内部跳转”的例子。而“子请求”则是由 Nginx 正在处理的请求在 Nginx 内部发起的一种级联请求。“子请求”在外观上很像 HTTP 请求,但实现上却和 HTTP 协议乃至网络通信一点儿关系都没有。它是 Nginx 内部的一种抽象调用,目的是为了方便用户把“主请求”的任务分解为多个较小粒度的“内部请求”,并发或串行地访问多个 location 接口,然后由这些 location 接口通力协作,共同完成整个“主请求”。当然,“子请求”的概念是相对的,任何一个“子请求”也可以再发起更多的“子子请求”,甚至可以玩递归调用(即自己调用自己)。当一个请求发起一个“子请求”的时候,按照 Nginx 的术语,习惯把前者称为后者的“父请求”(parent request)。值得一提的是,Apache 服务器中其实也有“子请求”的概念,所以来自 Apache 世界的读者对此应当不会感到陌生。下面就来看一个使用了“子请求”的例子:

点击(此处)折叠或打开

  1.     location /main {
  2.         echo_location /foo;
  3.         echo_location /bar;
  4.     }
  5.  
  6.     location /foo {
  7.         echo foo;
  8.     }
  9.  
  10.     location /bar {
  11.         echo bar;
  12.     }
这里在 location /main 中,通过第三方 ngx_echo 模块的 echo_location 指令分别发起到 /foo 和 /bar 这两个接口的 GET 类型的“子请求”。由 echo_location 发起的“子请求”,其执行是按照配置书写的顺序串行处理的,即只有当 /foo 请求处理完毕之后,才会接着处理 /bar 请求。这两个“子请求”的输出会按执行顺序拼接起来,作为 /main 接口的最终输出:
点击(此处)折叠或打开
  1.     $ curl ''
  2.     foo
  3.     bar

我们看到,“子请求”方式的通信是在同一个虚拟主机内部进行的,所以 Nginx 核心在实现“子请求”的时候,就只调用了若干个 C 函数,完全不涉及任何网络或者 UNIX 套接字(socket)通信。我们由此可以看出“子请求”的执行效率是极高的。回到先前对 Nginx 变量值容器的生命期的讨论,我们现在依旧可以说,它们的生命期是与当前请求相关联的。每个请求都有所有变量值容器的独立副本,只不过当前请求既可以是“主请求”,也可以是“子请求”。即便是父子请求之间,同名变量一般也不会相互干扰。让我们来通过一个小实验证明一下这个说法:

点击(此处)折叠或打开

  1.     location /main {
  2.         set $var main;
  3.         echo_location /foo;
  4.         echo_location /bar;
  5.         echo "main: $var";
  6.     }
  7.  
  8.     location /foo {
  9.         set $var foo;
  10.         echo "foo: $var";
  11.     }
  12.  
  13.     location /bar {
  14.         set $var bar;
  15.         echo "bar: $var";
  16.     }
在这个例子中,我们分别在 /main,/foo 和 /bar 这三个 location 配置块中为同一名字的变量,$var,分别设置了不同的值并予以输出。特别地,我们在 /main 接口中,故意在调用过 /foo 和 /bar 这两个“子请求”之后,再输出它自己的 $var 变量的值。请求 /main 接口的结果是这样的:
点击(此处)折叠或打开
  1.     $ curl ''
  2.     foo: foo
  3.     bar: bar
  4.     main: main

显然,/foo 和 /bar 这两个“子请求”在处理过程中对变量 $var 各自所做的修改都丝毫没有影响到“主请求” /main. 于是这成功印证了“主请求”以及各个“子请求”都拥有不同的变量 $var 的值容器副本。不幸的是,一些 Nginx 模块发起的“子请求”却会自动共享其“父请求”的变量值容器,比如第三方模块 ngx_auth_request. 下面是一个例子:
点击(此处)折叠或打开

  1.     location /main {
  2.         set $var main;
  3.         auth_request /sub;
  4.         echo "main: $var";
  5.     }
  6.  
  7.     location /sub {
  8.         set $var sub;
  9.         echo "sub: $var";
  10.     }
这里我们在 /main 接口中先为 $var 变量赋初值 main,然后使用 ngx_auth_request 模块提供的配置指令 auth_request,发起一个到 /sub 接口的“子请求”,最后利用 echo 指令输出变量 $var 的值。而我们在 /sub 接口中则故意把 $var 变量的值改写成 sub. 访问 /main 接口的结果如下:
点击(此处)折叠或打开
  1.     $ curl ''
  2.     main: sub

我们看到,/sub 接口对 $var 变量值的修改影响到了主请求 /main. 所以 ngx_auth_request 模块发起的“子请求”确实是与其“父请求”共享一套 Nginx 变量的值容器。对于上面这个例子,相信有读者会问:“为什么‘子请求’ /sub 的输出没有出现在最终的输出里呢?”答案很简单,那就是因为 auth_request 指令会自动忽略“子请求”的响应体,而只检查“子请求”的响应状态码。当状态码是 2XX 的时候,auth_request 指令会忽略“子请求”而让 Nginx 继续处理当前的请求,否则它就会立即中断当前(主)请求的执行,返回相应的出错页。在我们的例子中,/sub “子请求”只是使用 echo 指令作了一些输出,所以隐式地返回了指示正常的 200 状态码。如 ngx_auth_request 模块这样父子请求共享一套 Nginx 变量的行为,虽然可以让父子请求之间的数据双向传递变得极为容易,但是对于足够复杂的配置,却也经常导致不少难于调试的诡异 bug. 因为用户时常不知道“父请求”的某个 Nginx 变量的值,其实已经在它的某个“子请求”中被意外修改了。诸如此类的因共享而导致的不好的“副作用”,让包括 ngx_echo,ngx_,以及 ngx_srcache 在内的许多第三方模块都选择了禁用父子请求间的变量共享。


 内建变量用在“子请求”的上下文中时,其行为也会变得有些微妙。

前面在 (三) 中我们已经知道,许多内建变量都不是简单的“存放值的容器”,它们一般会通过注册“存取处理程序”来表现得与众不同,而它们即使有存放值的容器,也只是用于缓存“存取处理程序”的计算结果。我们之前讨论过的 $args 变量正是通过它的“取处理程序”来返回当前请求的 URL 参数串。因为当前请求也可以是“子请求”,所以在“子请求”中读取 $args,其“取处理程序”会很自然地返回当前“子请求”的参数串。我们来看这样的一个例子:
点击(此处)折叠或打开

  1.     location /main {
  2.         echo "main args: $args";
  3.         echo_location /sub "a=1&b=2";
  4.     }
  5.  
  6.     location /sub {
  7.         echo "sub args: $args";
  8.     }

这里在 /main 接口中,先用 echo 指令输出当前请求的 $args 变量的值,接着再用 echo_location 指令发起子请求 /sub. 这里值得注意的是,我们在 echo_location 语句中除了通过第一个参数指定“子请求”的 URI 之外,还提供了第二个参数,用以指定该“子请求”的 URL 参数串(即 a=1&b=2)。最后我们定义了 /sub 接口,在里面输出了一下 $args 的值。请求 /main 接口的结果如下:


点击(此处)折叠或打开

  1. $ curl '?c=3'
  2. main args: c=3
  3. sub args: a=1&b=2
显然,当 $args 用在“主请求” /main 中时,输出的就是“主请求”的 URL 参数串,c=3;而当用在“子请求” /sub 中时,输出的则是“子请求”的参数串,a=1&b=2。这种行为正符合我们的直觉。与 $args 类似,内建变量 $uri 用在“子请求”中时,其“取处理程序”也会正确返回当前“子请求”解析过的 URI:
点击(此处)折叠或打开
  1.     location /main {
  2.         echo "main uri: $uri";
  3.         echo_location /sub;
  4.     }
  5.  
  6.     location /sub {
  7.         echo "sub uri: $uri";
  8.     }
请求 /main 的结果是
点击(此处)折叠或打开
  1.     $ curl ''
  2.     main uri: /main
  3.     sub uri: /sub

这依然是我们所期望的。但不幸的是,并非所有的内建变量都作用于当前请求。少数内建变量只作用于“主请求”,比如由标准模块 ngx_http_core 提供的内建变量 $request_method。变量 $request_method 在读取时,总是会得到“主请求”的请求方法,比如 GET、POST 之类。我们来测试一下:
点击(此处)折叠或打开

  1.     location /main {
  2.         echo "main method: $request_method";
  3.         echo_location /sub;
  4.     }
  5.  
  6.     location /sub {
  7.         echo "sub method: $request_method";
  8.     }
在这个例子里,/main 和 /sub 接口都会分别输出 $request_method 的值。同时,我们在 /main 接口里利用 echo_location 指令发起一个到 /sub 接口的 GET “子请求”。我们现在利用 curl 命令行工具来发起一个到 /main 接口的 POST 请求:
点击(此处)折叠或打开
  1.     $ curl --data hello ''
  2.     main method: POST
  3.     sub method: POST

这里我们利用 curl 程序的 --data 选项,指定 hello 作为我们的请求体数据,同时 --data 选项会自动让发送的请求使用 POST 请求方法。测试结果证明了我们先前的预言,$request_method 变量即使在 GET “子请求” /sub 中使用,得到的值依然是“主请求” /main 的请求方法,POST.

有的读者可能觉得我们在这里下的结论有些草率,因为上例是先在“主请求”里读取(并输出)$request_method 变量,然后才发“子请求”的,所以这些读者可能认为这并不能排除 $request_method 在进入子请求之前就已经把第一次读到的值给缓存住,从而影响到后续子请求中的输出结果。不过,这样的顾虑是多余的,因为我们前面在 (五) 中也特别提到过,缓存所依赖的变量的值容器,是与当前请求绑定的,而由 ngx_echo 模块发起的“子请求”都禁用了父子请求之间的变量共享,所以在上例中,$request_method 内建变量即使真的使用了值容器作为缓存(事实上它也没有),它也不可能影响到 /sub 子请求。为了进一步消除这部分读者的疑虑,我们不妨稍微修改一下刚才那个例子,将 /main 接口输出 $request_method 变量的时间推迟到“子请求”执行完毕之后:
点击(此处)折叠或打开

  1.     location /main {
  2.         echo_location /sub;
  3.         echo "main method: $request_method";
  4.     }
  5.  
  6.     location /sub {
  7.         echo "sub method: $request_method";
  8.     }
让我们重新测试一下:
点击(此处)折叠或打开
  1.     $ curl --data hello ''
  2.     sub method: POST
  3.     main method: POST

可以看到,再次以 POST 方法请求 /main 接口的结果与原先那个例子完全一致,除了父子请求的输出顺序颠倒了过来(因为我们在本例中交换了 /main 接口中那两条输出配置指令的先后次序)。由此可见,我们并不能通过标准的 $request_method 变量取得“子请求”的请求方法。为了达到我们最初的目的,我们需要求助于第三方模块 ngx_echo 提供的内建变量 $echo_request_method:
点击(此处)折叠或打开

  1.     location /main {
  2.         echo "main method: $echo_request_method";
  3.         echo_location /sub;
  4.     }
  5.  
  6.     location /sub {
  7.         echo "sub method: $echo_request_method";
  8.     }
此时的输出终于是我们想要的了:
点击(此处)折叠或打开
  1.     $ curl --data hello ''
  2.     main method: POST
  3.     sub method: GET

我们看到,父子请求分别输出了它们各自不同的请求方法,POST 和 GET.类似 $request_method,内建变量 $request_uri 一般也返回的是“主请求”未经解析过的 URL,毕竟“子请求”都是在 Nginx 内部发起的,并不存在所谓的“未解析的”原始形式。如果真如前面那部分读者所担心的,内建变量的值缓存在共享变量的父子请求之间起了作用,这无疑是灾难性的。我们前面在 (五) 中已经看到 ngx_auth_request 模块发起的“子请求”是与其“父请求”共享一套变量的。下面是一个这样的可怕例子:
点击(此处)折叠或打开

  1.     map $uri $tag {
  2.         default 0;
  3.         /main 1;
  4.         /sub 2;
  5.     }
  6.  
  7.     server {
  8.         listen 8080;
  9.  
  10.         location /main {
  11.             auth_request /sub;
  12.             echo "main tag: $tag";
  13.         }
  14.  
  15.         location /sub {
  16.             echo "sub tag: $tag";
  17.         }
  18.     }
这里我们使用久违了的 map 指令来把内建变量 $uri 的值映射到用户变量 $tag 上。当 $uri 的值为 /main 时,则赋予 $tag 值 1,当 $uri 取值 /sub 时,则赋予 $tag 值 2,其他情况都赋 0. 接着,我们在 /main 接口中先用 ngx_auth_request 模块的 auth_request 指令发起到 /sub 接口的子请求,然后再输出变量 $tag 的值。而在 /sub 接口中,我们直接输出变量 $tag. 猜猜看,如果我们访问接口 /main,将会得到什么样的输出呢?
点击(此处)折叠或打开
  1.     $ curl ''
  2.     main tag: 2

咦?我们不是分明把 /main 这个值映射到 1 上的么?为什么实际输出的是 /sub 映射的结果 2 呢?

其实道理很简单,因为我们的 $tag 变量在“子请求” /sub 中首先被读取,于是在那里计算出了值 2(因为 $uri 在那里取值 /sub,而根据 map 映射规则,$tag 应当取值 2),从此就被 $tag 的值容器给缓存住了。而 auth_request 发起的“子请求”又是与“父请求”共享一套变量的,于是当 Nginx 的执行流回到“父请求”输出 $tag 变量的值时,Nginx 就直接返回缓存住的结果 2 了。这样的结果确实太意外了。

从这个例子我们再次看到,父子请求间的变量共享,实在不是一个好主意。

阅读(1477) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~