Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1963554
  • 博文数量: 261
  • 博客积分: 8073
  • 博客等级: 中将
  • 技术积分: 2363
  • 用 户 组: 普通用户
  • 注册时间: 2006-04-10 15:23
文章分类

全部博文(261)

文章存档

2013年(1)

2012年(1)

2011年(50)

2010年(34)

2009年(4)

2008年(17)

2007年(55)

2006年(99)

分类:

2007-04-02 21:50:30

    杨元生老师:“当拿到一个问题的时候,首先我要到网上搜搜,看看有没有类似的问题,如

果有就下载下来,看看是不是和我所要解决的问题类似,如果是类似的,拿当然最好,看看别人

是怎么写的,然后在别人的基 础上改改。 反之,如果你拿到一个问题就在那闷头想,然后自己

费了老大劲作出来,你是傻子。你这是闭门早车,完 全忽视人民群众的力量,当然人民群众也可

以忽视你。”

    杨元生老师:“我站在喜马拉雅上的半山腰,前进了不到100米;你平地而起,辛苦造了

2000多米的山,你确 实比我前进的多,但是我仍然高于你”

    上述话已经经过我的串改了,但是大体意思就是:要站在巨人的肩膀上去摘取胜利的果

实。杨老师的话对我启 发真的是很大,我很多情况都想从头做一件事情以证明自己的能力,熟

不知这正是我经常失败的原因,既然有那 么多先辈已经用血肉之躯为我们铺平了道路,为什么

我们要置他们的努力而不顾,反而又去为同样的事情牺牲 呢?如果真这么做,这不是彪麽,嘿

嘿~~~

下面贴一个Hopield网的经典程序(《神经网络模式识别及其实现》书后源代码,写的很好)


#include
#include
#include
#include
#include

//----------------------------------------------------------------------------

// DEFINES
#define MAXNEURONS      64
#define MAXPATTERNS     10
#define MAXITER         600000
#define TRUE            1
#define FALSE           0
//#undef  SIDESHOW
#define SIDESHOW
//----------------------------------------------------------------------------
// FUNCTION PROTOTYPES

// network fns
void InitNetRand(void);                 // Scramble net state
void LoadTrainingSet(char *Fname);      // Get training set from file
void TrainNet();                        // Train net to recognize patterns
void RunNet(void);                      // Update net til convergance or MAXITER
int UpdateNeuron(int j);                // Udate jTH neuron.
                                        //       Return True if state changed
void LoadUserPattern(char *Fname);
int QueryAllClean(void);                // Return TRUE if all neurons were visited
void SetAllToDirty(void);               // Set all neurons to NOT visited
// utility fns
void Initialize(int cnt, char *Name);   // housekeeping
void DisplayPatVect(int V[MAXNEURONS]); // show Net/Pattern (human-eye view)
void SavePatVect(int V[MAXNEURONS],     // store Net/Pattern (human-eye view)
                     char *txt, int i); //   to the archive file
void DisplayWeights(void);              // show the weight matrix
void DisplayPatterns(void);             // Display all trained patterns
int  QueryUserInt(char *msg);
void KeyWait(void);
void KeyWait2(char *txt);
int  random(int N);
//----------------------------------------------------------------------------

// GLOBALS
int PatVec[MAXNEURONS];                 // Pattern Vector
int PatMatrix[MAXPATTERNS][MAXNEURONS]; // Pattern Vector
int NEURON[MAXNEURONS];                 // Network
int T[MAXNEURONS][MAXNEURONS];          // Weight matrix
int NumNeurons;                         // Actual size of net
int NumPatterns;                        // Actual number of patterns
int PatternX;                           // X-dimension for human viewing
int PatternY;                           // Y-dimension for human viewing
int Dirty[MAXNEURONS];                  // TRUE if neuron has not been updated
                                        // FALSE otherwise

FILE *ARCHIVE;

//----------------------------------------------------------------------------

int  random(int N){
 int x;
 x=N*rand();
 return (x/RAND_MAX);
}

void DisplayPatVect(int V[MAXNEURONS]){
   int x,y,indx;
   indx=0;
   for (y=0; y      for (x=0; x          if (V[indx]==1) {
              printf("X");
          } else {
              printf(".");
          } /* endif */
          indx++;
         } /* endfor */
      printf("\n");
      } /* endfor */
   printf("\n");
}

void SavePatVect(int V[MAXNEURONS], char *txt, int i) {
   int x,y,indx;
   indx=0;
   fprintf(ARCHIVE,"\n");
   for (y=0; y      for (x=0; x         if (V[indx]==1) {
            fprintf(ARCHIVE,"X");
         } else {
            fprintf(ARCHIVE,".");
         } /* endif */
         indx++;
         } /* endfor */
      fprintf(ARCHIVE,"\n");
      } /* endfor */
   fprintf(ARCHIVE,"\n%s ",txt);
   if (i>=0) fprintf(ARCHIVE,"%d ",i);
   fprintf(ARCHIVE,"\n\n ");
}

void DisplayWeights(){
    int i,j;
 fprintf(ARCHIVE,"WEIGHTS:\n");
 for (i=0; i     fprintf(ARCHIVE,"[");
     for (j=0; j         fprintf(ARCHIVE, " %d",T[j][i]);
        } /* endfor */
     fprintf(ARCHIVE,"]\n");
    } /* endfor */
}

void DisplayPatterns() {
    int i,p;
 for (p=0; p     for (i=0; i         PatVec[i] =PatMatrix[p][i];
        } /* endfor */
     DisplayPatVect(PatVec);                         // show 1st training pattern
     SavePatVect(PatVec, "Training Pattern", p+1);
     printf("\n\nTraining Pattern %d of %d\n\n",p+1,NumPatterns);
     KeyWait();
 } /* endfor */
}

int  QueryUserInt(char *msg){
int rv;
printf("Enter %s ==> ",msg);
scanf("%d",&rv);
return rv;
}

void KeyWait(void){
printf("Press any key to continue.\n");
while (!kbhit()) { } /* endwhile */
getch();
system("cls");
}

void KeyWait2(char *txt){
 printf("\n\n%s\n",txt);
 KeyWait();
}

void InitNetRand() {
   int i,r;

fprintf(ARCHIVE,"Creating test pattern\n");
srand(5);

for (i=0; i   r=random(100);  
   if (r >= 50) {
      NEURON[i]=0;
      }
    else {
      NEURON[i]=1;
      } /* endif */
   } /* endfor */

}

void LoadTrainingSet(char *Fname) {
   int pat,j, InVal;
FILE *PATTERNFILE;

printf("Loading training set from file: %s\n",Fname);
fprintf(ARCHIVE,"Loading training set from file: %s\n",Fname);
PATTERNFILE = fopen(Fname,"r");
if (PATTERNFILE==NULL){
   printf("Unable to open training Set file: %s",Fname);
   exit(0);
   }

fscanf(PATTERNFILE,"%d",&NumNeurons);          // Get number of neurons
fscanf(PATTERNFILE,"%d",&NumPatterns);         // Get number of patterns
fscanf(PATTERNFILE,"%d",&PatternX);            // X-dimension for human viewing
fscanf(PATTERNFILE,"%d",&PatternY);            // Y-dimension for human viewing
printf("%d Patterns Loaded\n",NumPatterns);
fprintf(ARCHIVE,"%d Patterns Loaded\n",NumPatterns);
for (pat=0; pat   for (j=0; j       fscanf(PATTERNFILE,"%d",&InVal);
       PatMatrix[pat][j] =InVal;
      } // endfor
   } // endfor
fclose(PATTERNFILE);
}


void LoadUserPattern(char *Fname) {
    int j, InVal;
 FILE *PATTERNFILE;

 printf("Loading pattern from file: %s\n", Fname);
 fprintf(ARCHIVE,"Loading pattern from file: %s\n", Fname);
 PATTERNFILE = fopen(Fname,"r");
 if (PATTERNFILE==NULL){
    printf("Unable to open file: %s",Fname);
    exit(0);
 }

 printf("\n");
 for (j=0; j    fscanf(PATTERNFILE,"%d",&InVal);
    NEURON[j] =InVal;
 } // endfor
 fclose(PATTERNFILE);
}


void TrainNet(){
    int i,j,pat;
    int Sum;
 for (i=0; i     for (j=0; j         Sum=0;
         for (pat=0; pat            Sum += (2*PatMatrix[pat][i]-1) *  (2*PatMatrix[pat][j]-1);
           } /* endfor */
         T[j][i] = T[i][j] = Sum;
        } /* endfor */
    } /* endfor */
 for (i=0; i     T[i][i]=0;                    //   ...so it doesn't cause trouble later
    } /* endfor */
}


int QueryAllClean() {
    int i;
 for (i=0; i     if (Dirty[i]==TRUE) return FALSE;
    } // endfor
 return TRUE;
}


void SetAllToDirty() {
    int i;
 for (i=0; i     Dirty[i]=TRUE;
    } // endfor
}


int UpdateNeuron(int j) {
    int i;
    int Sum = 0;
    int OldState = NEURON[j];
 for (i=0; i     Sum += T[j][i] * NEURON[i];  // remember we set diagnal of matrix T to 0 ..
                                //         .. so no need to test for i==j
    } /* endfor */

 if (Sum < 0) {
     NEURON[j] = 0;
    }
  else {
     if (Sum>0)
         NEURON[j] = 1;
    } /* endif */

 if (NEURON[j] == OldState) {
     return 0;
    }
  else {
     return 1;
    } /* endif */
}


void RunNet(void) {
    int j;
    int Converged = FALSE;
    int ChngCount = 0;
    unsigned long int IterCount = 0;
    int ArchCnt=0;
    SetAllToDirty();
 while ( (!Converged) && (IterCount < MAXITER) ) {
     j = random(NumNeurons);
     ChngCount += UpdateNeuron(j);  // increment if neuron changed state
     DisplayPatVect(NEURON);
     printf("RUNNING...   Iteration=%d \n",IterCount);
     if (ArchCnt>=9) {
         SavePatVect(NEURON, "Net output at iteration =", IterCount+1);
         ArchCnt=0;
        } else {
         ArchCnt++;
       } /* endif */
     Dirty[j] = FALSE;              // Record that we've  covered this neuron


     if (QueryAllClean()) {         // Check if we hit all neurons at least once
         // here if we have hit all at least once
         if (ChngCount == 0) {       // Check if any neurons changed this pass
            // if we're here then weve converged
            Converged = TRUE;
            printf("\nCONVERGED");
            SavePatVect(NEURON, "Net after converance at iteration=", IterCount);
           }
         else {
            // if here then NOT converged so reinit for another pass
            SetAllToDirty();
            ChngCount=0;
           } /* endif */
        } /* endif */
     IterCount++;                   // Increment iteration counter
    } /* endwhile */
}


void Initialize(char *Name1, char *Name2) {    // housekeeping
 char TrnName[50];
 char TstName[50];

 ARCHIVE = fopen("ARCHIVE.LST","w");
 if (ARCHIVE==NULL){
    printf("Unable to open default archive file: ARCHIVE.LST");
    exit(0);
    }
 strcpy(TrnName,Name1);
 strcpy(TstName,Name2);
 LoadTrainingSet(TrnName);
 if (strcmpi("RANDOM",TstName) )
    LoadUserPattern(TstName);
  else
    InitNetRand();            // randomize pattern on user request


 KeyWait();
}

int main(int argc, char *argv[]) {

   int i;

 if (argc<3) {
     printf("usage: hopnet TrainingFile [PatternFile]");
     return 1;
    } /* endif */

 Initialize(argv[1], argv[2]);
 DisplayPatVect(NEURON);  // show net is set to test pattern
 SavePatVect(NEURON, "Test Pattern", -1);
 KeyWait2("TEST PATTERN");
 DisplayPatterns();
 TrainNet();
 DisplayWeights();
 RunNet();
 fclose(ARCHIVE);
 return 0;
}


阅读(797) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~