Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2128333
  • 博文数量: 374
  • 博客积分: 7276
  • 博客等级: 少将
  • 技术积分: 5669
  • 用 户 组: 普通用户
  • 注册时间: 2011-10-06 16:35
文章分类

全部博文(374)

文章存档

2013年(23)

2012年(153)

2011年(198)

分类: LINUX

2011-10-20 09:50:48

众所周知,C/C++语言本身并不支持垃圾回收机制,虽然语言本身具有极高的灵活性,但是当遇到大型的项目时,繁琐的内存管理往往让人痛苦异常。现 代的C/C++类库一般会提供智能指针来作为内存管理的折中方案,比如STL的auto_ptr,Boost的Smart_ptr库,QT的 QPointer家族,甚至是基于C语言构建的GTK+也通过引用计数来实现类似的功能。Linux内核是如何解决这个问题呢?同样作为C语言的解决方 案,Linux内核采用的也是引用计数的方式。如果您更熟悉C++,可以把它类比为Boost的shared_ptr,或者是QT的 QSharedPointer。

在Linux内核里,引用计数是通过struct kref结构来实现的。在介绍如何使用kref之前,我们先来假设一个情景。假如您开发的是一个字符设备驱动,当设备插上时,系统自动建立一个设备节点,用户通过文件操作来访问设备节点。

如上图所示,最左边的绿色框图表示实际设备的插拔动作,中间黄色的框图表示内核中设备对象的生存周期,右边蓝色的框图表示用户程序系统调用的顺序。 如果用户程序正在访问的时候设备突然被拔掉,驱动程序里的设备对象是否立刻释放呢?如果立刻释放,用户程序执行的系统调用一定会发生内存非法访问;如果要 等到用户程序close之后再释放设备对象,我们应该怎么来实现?kref就是为了解决类似的问题而生的。

kref的定义非常简单,其结构体里只有一个原子变量。

1struct kref {
2    atomic_t refcount;
3};

Linux内核定义了下面三个函数接口来使用kref:

1void kref_init(struct kref *kref);
2void kref_get(struct kref *kref);
3int kref_put(struct kref *kref, void (*release) (struct kref *kref));

我们先通过一段伪代码来了解一下如何使用kref。

01struct my_obj
02{
03    int val;
04    struct kref refcnt;
05};
06 
07struct my_obj *obj;
08 
09void obj_release(struct kref *ref)
10{
11    struct my_obj *obj = container_of(ref, struct my_obj, refcnt);
12    kfree(obj);
13}
14 
15device_probe()
16{
17    obj = kmalloc(sizeof(*obj), GFP_KERNEL);
18    kref_init(&obj->refcnt);
19}
20 
21device_disconnect()
22{
23    kref_put(&obj->refcnt, obj_release);
24}
25 
26.open()
27{
28    kref_get(&obj->refcnt);
29}
30 
31.close()
32{
33    kref_put(&obj->refcnt, obj_release);
34}

在这段代码里,我们定义了obj_release来作为释放设备对象的函数,当引用计数为0时,这个函数会被立刻调用来执行真正的释放动作。我们先 在device_probe里把引用计数初始化为1,当用户程序调用open时,引用计数又会被加1,之后如果设备被拔 掉,device_disconnect会减掉一个计数,但此时refcnt还不是0,设备对象obj并不会被释放,只有当close被调用之 后,obj_release才会执行。

看完伪代码之后,我们再来实战一下。为了节省篇幅,这个实作并没有建立一个字符设备,只是通过模块的加载和卸载过程来对感受一下kref。

01#include
02#include
03 
04struct my_obj {
05        int val;
06        struct kref refcnt;
07};
08 
09struct my_obj *obj;
10 
11void obj_release(struct kref *ref)
12{
13        struct my_obj *obj = container_of(ref, struct my_obj, refcnt);
14        printk(KERN_INFO "obj_release\n");
15        kfree(obj);
16}
17 
18static int __init kreftest_init(void)
19{
20        printk(KERN_INFO "kreftest_init\n");
21        obj = kmalloc(sizeof(*obj), GFP_KERNEL);
22        kref_init(&obj->refcnt);
23        return 0;
24}
25 
26static void __exit kreftest_exit(void)
27{
28        printk(KERN_INFO "kreftest_exit\n");
29        kref_put(&obj->refcnt, obj_release);
30        return;
31}
32 
33module_init(kreftest_init);
34module_exit(kreftest_exit);
35 
36MODULE_LICENSE("GPL");

通过kbuild编译之后我们得到kref_test.ko,然后我们顺序执行以下命令来挂载和卸载模块。

sudo insmod ./kref_test.ko

sudo rmmod kref_test

此时,系统日志会打印出如下消息:

kreftest_init

kreftest_exit

obj_release

这正是我们预期的结果。

 

有了kref引用计数,即使内核驱动写的再复杂,我们对内存管理也应该有信心了吧。


在上一篇文章《Linux内核里的智能指针》里介绍了Linux内核如何使用引用计数来更加安全的管理内存,本文承接前篇,主要介绍几点使用kref时的注意事项。

Linux内核文档kref.txt罗列了三条规则,我们在使用kref时必须遵守。

规则一:

If you make a non-temporary copy of a pointer, especially if  it can be passed to another thread of execution, you must  increment the refcount with kref_get() before passing it off;

规则二:

When you are done with a pointer, you must call kref_put();

规则三:

If the code attempts to gain a reference to a kref-ed structure without already holding a valid pointer, it must serialize access where a kref_put() cannot occur during the kref_get(), and the   structure must remain valid during the kref_get().

 

对于规则一,其实主要是针对多条执行路径(比如另起一个线程)的情况。如果是在单一的执行路径里,比如把指针传递给一个函数,是不需要使用kref_get的。看下面这个例子:

01kref_init(&obj->ref);
02 
03// do something here
04// ...
05 
06kref_get(&obj->ref);
07call_something(obj);
08kref_put(&obj->ref);
09 
10// do something here
11// ...
12 
13kref_put(&obj->ref);

您是不是觉得call_something前后的一对kref_get和kref_put很多余呢?obj并没有逃出我们的掌控,所以它们确实是没有必要的。

但是当遇到多条执行路径的情况就完全不一样了,我们必须遵守规则一。下面是摘自内核文档里的一个例子:

01struct my_data
02{
03    .
04    .
05    struct kref refcount;
06    .
07    .
08};
09 
10void data_release(struct kref *ref)
11{
12    struct my_data *data = container_of(ref, struct my_data, refcount);
13    kfree(data);
14}
15 
16void more_data_handling(void *cb_data)
17{
18    struct my_data *data = cb_data;
19    .
20    . do stuff with data here
21    .
22    kref_put(&data->refcount, data_release);
23}
24 
25int my_data_handler(void)
26{
27    int rv = 0;
28    struct my_data *data;
29    struct task_struct *task;
30    data = kmalloc(sizeof(*data), GFP_KERNEL);
31    if (!data)
32        return -ENOMEM;
33    kref_init(&data->refcount);
34 
35    kref_get(&data->refcount);
36    task = kthread_run(more_data_handling, data, "more_data_handling");
37    if (task == ERR_PTR(-ENOMEM)) {
38        rv = -ENOMEM;
39        goto out;
40    }
41 
42    .
43    . do stuff with data here
44    .
45 out:
46    kref_put(&data->refcount, data_release);
47    return rv;
48}

因为我们并不知道线程more_data_handling何时结束,所以要用kref_get来保护我们的数据。

注意规则一里的那个单词“before",kref_get必须是在传递指针之前进行,在本例里就是在调用kthread_run之前就要执行kref_get,否则,何谈保护呢?

 

对于规则二我们就不必多说了,前面调用了kref_get,自然要配对使用kref_put。

 

规则三主要是处理遇到链表的情况。我们假设一个情景,如果有一个链表摆在你的面前,链表里的节点是用引用计数保护的,那你如何操作呢?首先我们需要 获得节点的指针,然后才可能调用kref_get来增加该节点的引用计数。根据规则三,这种情况下我们要对上述的两个动作串行化处理,一般我们可以用 mutex来实现。请看下面这个例子:

01static DEFINE_MUTEX(mutex);
02static LIST_HEAD(q);
03struct my_data
04{
05    struct kref  refcount;
06    struct list_head link;
07};
08 
09static struct my_data *get_entry()
10{
11    struct my_data *entry = NULL;
12    mutex_lock(&mutex);
13    if (!list_empty(&q)) {
14        entry = container_of(q.next, struct my_q_entry, link);
15        kref_get(&entry->refcount);
16    }
17    mutex_unlock(&mutex);
18    return entry;
19}
20 
21static void release_entry(struct kref *ref)
22{
23    struct my_data *entry = container_of(ref, struct my_data, refcount);
24 
25    list_del(&entry->link);
26    kfree(entry);
27}
28 
29static void put_entry(struct my_data *entry)
30{
31    mutex_lock(&mutex);
32    kref_put(&entry->refcount, release_entry);
33    mutex_unlock(&mutex);
34}

这个例子里已经用mutex来进行保护了,假如我们把mutex拿掉,会出现什么情况?记住,我们遇到的很可能是多线程操作。如果线程A在用 container_of取得entry指针之后、调用kref_get之前,被线程B抢先执行,而线程B碰巧又做的是kref_put的操作,当线程A 恢复执行时一定会出现内存访问的错误,所以,遇到这种情况一定要串行化处理。

 

我们在使用kref的时候要严格遵循这三条规则,才能安全有效的管理数据。



作者:wwang
出处:http://www.cnblogs.com/wwang
本文采用进行许可,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

阅读(860) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~