打印一个特殊矩阵
作者:tyc611.cublog.cn,2008-10-01
【问题描述】
考查下面的矩阵的特征:
n=3:
1 2 1
1 2 1
1 1 1
n=4:
1 2 2 1
1 2 2 1
1 2 2 1
1 1 1 1
n=5:
1 2 2 2 1
1 2 3 2 1
1 2 3 2 1
1 2 3 2 1
1 1 1 1 1
n=6:
1 2 2 2 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 2 3 3 2 1
1 1 1 1 1 1
n=7:
1 2 2 2 2 2 1
1 2 3 4 3 2 1
1 2 3 4 3 2 1
1 2 3 4 3 2 1
1 2 3 4 3 2 1
1 2 3 3 3 2 1
1 1 1 1 1 1 1
当 i = 17 时:
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
1 2 3 4 4 4 4 4 4 4 4 4 4 4 3 2 1
1 2 3 4 5 6 6 6 6 6 6 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 7 7 7 6 5 4 3 2 1
1 2 3 4 5 5 5 5 5 5 5 5 5 4 3 2 1
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1. 编写打印n阶矩阵的函数,接口如下:
void PrintMatrix(int n);
2. 额外要求,函数的空间复杂度为O(1)(目的是不让使用矩阵空间暂存结果,实现线性扫描)
【实现】
下面的函数PrintMatrix1借助了一个辅助矩阵,而PrintMatrix2直接打印输出矩阵。
#include
#include
using namespace std;
// 借助矩阵,空间复杂度为O(n^2)
void PrintMatrix1(int n)
{
vector > matrix(n, vector(n, 0));
int low = 0;
int high = n - 1;
int horizon = n - 1;
int num = 1;
for (int i = 0; i < (n + 1) / 2; ++i, ++num) {
for (int k = low; k <= high; ++k) {
matrix[k][i] = num;
matrix[k][n - 1 - i] = num;
}
for (int k = i + 1; k < n - 1 - i; ++k)
matrix[horizon][k] = num;
if (horizon == low) {
horizon = high;
++low;
} else {
horizon = low;
--high;
}
}
for (int i = 0; i < n; ++i) {
for (int k = 0; k < n; ++k)
cout << matrix[i][k] << ' ';
cout << '\n';
}
}
// 不借助辅助空间,直接打印输出,空间复杂度为O(1)
void PrintMatrix2(int n)
{
int num = (n + 1) / 2;
for (int i = 1; i <= num / 2; ++i) {
int d = 2 * i;
for (int k = 1; k <= d - 1; ++k)
cout << k << ' ';
for (int k = 0; k < n - 2 * (d - 1); ++k)
cout << d << ' ';
for (int k = d - 1; k >= 1; --k)
cout << k << ' ';
cout << '\n';
}
for (int i = 0; i < n - num; ++i) {
for (int k = 1; k <= n / 2; ++k)
cout << k << ' ';
for (int k = n - n / 2; k >= 1; --k)
cout << k << ' ';
cout << '\n';
}
for (int i = num - num / 2; i >= 1; --i) {
int d = 2 * i - 1;
for (int k = 1; k <= d - 1; ++k)
cout << k << ' ';
for (int k = 0; k < n - 2 * (d - 1); ++k)
cout << d << ' ';
for (int k = d - 1; k >= 1; --k)
cout << k << ' ';
cout << '\n';
}
}
int main()
{
int i = 15;
cout << "当 i = " << i << " 时:\n";
cout << "Print1:\n";
PrintMatrix1(i);
cout << "Print2:\n";
PrintMatrix2(i);
cout << endl;
return 0;
}
程序运行结果:
当 i = 15 时:
Print1:
1 2 2 2 2 2 2 2 2 2 2 2 2 2 1
1 2 3 4 4 4 4 4 4 4 4 4 3 2 1
1 2 3 4 5 6 6 6 6 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 5 5 5 5 5 5 5 4 3 2 1
1 2 3 3 3 3 3 3 3 3 3 3 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Print2:
1 2 2 2 2 2 2 2 2 2 2 2 2 2 1
1 2 3 4 4 4 4 4 4 4 4 4 3 2 1
1 2 3 4 5 6 6 6 6 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 5 5 5 5 5 5 5 4 3 2 1
1 2 3 3 3 3 3 3 3 3 3 3 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
阅读(1165) | 评论(0) | 转发(0) |