Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1459395
  • 博文数量: 295
  • 博客积分: 10051
  • 博客等级: 上将
  • 技术积分: 3850
  • 用 户 组: 普通用户
  • 注册时间: 2008-04-11 08:50
文章分类

全部博文(295)

文章存档

2011年(1)

2009年(4)

2008年(290)

我的朋友

分类: Java

2008-04-17 15:23:36

  1. import java.util.List;   
  2. import java.util.ArrayList;   
  3. import java.util.LinkedList;   
  4.   
  5. import java.util.Map;   
  6. import java.util.HashMap;   
  7. import java.util.LinkedHashMap;   
  8. import java.util.TreeMap;
  9.   
  10. import java.util.Set;   
  11. import java.util.HashSet;   
  12. import java.util.LinkedHashSet;   
  13. import java.util.TreeSet;
  14.   
  15. import java.util.Vector;   
  16. import java.util.Hashtable;  

1、java.util.ArrayList

  • List 接口的大小可变数组的实现。实现了所有可选列表操作,并允许包括 null 在内的所有元素。除了实现 List 接口外,此类还提供一些方法来操作内部用来存储列表的数组的大小。(此类大致上等同于 Vector 类,除了此类是不同步的。)

    sizeisEmptygetsetiteratorlistIterator 操作都以固定时间运行。add 操作以分摊的固定时间 运行,也就是说,添加 n 个元素需要 O(n) 时间。其他所有操作都以线性时间运行(大体上讲)。与用于 LinkedList 实现的常数因子相比,此实现的常数因子较低。

    每个 ArrayList 实例都有一个容量。该容量是指用来存储列表元素的数组的大小。它总是至少等于列表的大小。随着向 ArrayList 中不断添加元素,其容量也自动增长。并未指定增长策略的细节,因为这不只是添加元素会带来分摊固定时间开销那样简单。

    在添加大量元素前,应用程序可以使用 ensureCapacity 操作来增加 ArrayList 实例的容量。这可以减少递增式再分配的数量。

    注意,此实现不是同步的。如果多个线程同时访问一个 ArrayList 实例,而其中至少一个线程从结构上修改了列表,那么它必须 保持外部同步。(结构上的修改是指任何添加或删除一个或多个元素的操作,或者显式调整底层数组的大小;仅仅设置元素的值不是结构上的修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方法将该列表“包装”起来。这最好在创建时完成,以防止意外对列表进行不同步的访问:

            List list = Collections.synchronizedList(new ArrayList(...));

    此类的 iteratorlistIterator 方法返回的迭代器是快速失败的:在创建迭代器之后,除非通过迭代器自身的 remove 或 add 方法从结构上对列表进行修改,否则在任何时间以任何方式对列表进行修改,迭代器都会抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。

    注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭代器的快速失败行为应该仅用于检测 bug。

    此类是 Java Collections Framework 的成员。

    Since: 1.2

    2、java.util.LinkedList

    List 接口的链接列表实现。实现所有可选的列表操作,并且允许所有元素(包括 null)。除了实现 List 接口外,LinkedList 类还为在列表的开头及结尾 getremoveinsert 元素提供了统一的命名方法。这些操作允许将链接列表用作堆栈、队列或双端队列 (deque)。

    此类实现 Queue 接口,为 addpoll 等提供先进先出队列操作。其他堆栈和双端队列操作可以根据标准列表操作方便地进行再次强制转换。虽然它们可能比等效列表操作运行稍快,但是将其包括在这里主要是出于方便考虑。

    所有操作都是按照双重链接列表的需要执行的。在列表中编索引的操作将从开头或结尾遍历列表(从靠近指定索引的一端)。

    注意,此实现不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方法来“包装”该列表。最好在创建时完成这一操作,以防止对列表进行意外的不同步访问,如下所示:

         List list = Collections.synchronizedList(new LinkedList(...));
    

    此类的 iteratorlistIterator 方法返回的迭代器是快速失败 的:在迭代器创建之后,如果从结构上对列表进行修改,除非通过迭代器自身的 removeadd 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒将来不确定的时间任意发生不确定行为的风险。

    注意,迭代器的快速失败行为不能得到保证,一般来说,存在不同步的并发修改时,不可能作出任何硬性保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的方式是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

    此类是 Java Collections Framework 的成员。

    Since: 1.2

    3、Vector 类提供了实现可增长数组的功能,随着更多元素加入其中,数组变的更大。在删除一些元素之后,数组变小。

  • java.util.Vector

    java.lang.Object
      继承者 java.util.AbstractCollection
          继承者 java.util.AbstractList
              继承者 java.util.Vector
    
    所有已实现的接口:
    Serializable, Cloneable, Iterable, Collection, List, RandomAccess
    直接子类:Stack

    Vector 类可以实现可增长的对象数组。与数组一样,它包含可以使用整数索引进行访问的组件。但是,Vector 的大小可以根据需要增大或缩小,以适应创建 Vector 后进行添加或移除项的操作。

    每个向量会试图通过维护 capacitycapacityIncrement 来优化存储管理。capacity 始终至少应与向量的大小相等;这个值通常比后者大些,因为随着将组件添加到向量中,其存储将按 capacityIncrement 的大小增加存储块。应用程序可以在插入大量组件前增加向量的容量;这样就减少了增加的重分配的量。

    从 Java 2 平台 v1.2 开始,已改进此类以实现 List,这样它就成为了 Java 的集合框架的一部分。与新集合的实现不同,Vector 是同步的。

    由 Vector 的 iterator 和 listIterator 方法所返回的迭代器是快速失败的:如果在迭代器创建后的任意时间从结构上修改了向量(通过迭代器自身的 remove 或 add 方法之外的任何其他方式),则迭代器将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就完全失败,而不是冒着在将来不确定的时间任意发生不确定行为的风险。Vector 的 elements 方法返回的 Enumeration 不是 快速失败的。

    注意,迭代器的快速失败行为不能得到保证,一般来说,存在不同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的方式是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测 bug。
      Vector 有三个构造函数:

      public Vector(int initialCapacity,int capacityIncrement)
      public Vector(int initialCapacity)
      public Vector()

      Vector 运行时创建一个初始的存储容量initialCapacity,存储容量是以capacityIncrement 变量定义的增量增长。初始的存储容量和capacityIncrement 可以在Vector 的构造函数中定义。第二个构造函数只创建初始存储容量。第三个构造函数既不指定初始的存储容量也不指定capacityIncrement。

      Vector 类提供的访问方法支持类似数组运算和与Vector 大小相关的运算。类似数组的运算允许向量中增加,删除和插入元素。它们也允许测试矢量的内容和检索指定的元素,与大小相关的运算允许判定字节大小和矢量中元素不数目。

    4、java.util.Hashtable

    java.lang.Object
    继承者 java.util.Dictionary
          继承者 java.util.Hashtable

    所有已实现的接口:
    Serializable, Cloneable, Map
    直接已知子类:
    Properties, UIDefaults

    此类实现一个哈希表,该哈希表将键映射到相应的值。任何非 null 对象都可以用作键或值。

    为了成功地在哈希表中存储和检索对象,用作键的对象必须实现 hashCode 方法和 equals 方法。

    Hashtable 的实例有两个参数影响其性能:初始容量加载因子容量 是哈希表中 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。

    通常,默认加载因子(.75)在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 getput 操作,都反映了这一点)。

    初始容量主要控制空间消耗与执行 rehash 操作所需要的时间损耗之间的平衡。如果初始容量大于 Hashtable 所包含的最大条目数除以加载因子,则永远 不会发生 rehash 操作。但是,将初始容量设置太高可能会浪费空间。

    如果很多条目要存储在一个 Hashtable 中,那么与根据需要执行自动 rehashing 操作来增大表的容量的做法相比,使用足够大的初始容量创建哈希表或许可以更有效地插入条目。

    下面这个示例创建了一个数字的哈希表。它将数字的名称用作键:

         Hashtable numbers = new Hashtable();
         numbers.put("one", new Integer(1));
         numbers.put("two", new Integer(2));
         numbers.put("three", new Integer(3));

    要检索一个数字,可以使用以下代码:

       Integer n = (Integer)numbers.get("two");
          if (n != null) {
                System.out.println("two = " + n);
          }

    自 Java 2 平台 v1.2 以来,此类已经改进为可以实现 Map,因此它变成了 Java Collections Framework 的一部分。与新集合的实现不同,Hashtable 是同步的。

    由迭代器返回的 Iterator 和由所有 Hashtable 的“collection 视图方法”返回的 Collection 的 listIterator 方法都是快速失败 的:在创建 Iterator 之后,如果从结构上对 Hashtable 进行修改,除非通过 Iterator 自身的移除或添加方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出 ConcurrentModificationException。因此,面对并发的修改,Iterator 很快就会完全失败,而不冒在将来某个不确定的时间发生任意不确定行为的风险。由 Hashtable 的键和值方法返回的 Enumeration 是快速失败的。

    注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。

    此类是 Java Collections Framework 的成员。

    5、java.util.HashMap

    java.lang.Object
      继承者 java.util.AbstractMap
          继承者 java.util.HashMap
    
    所有已实现的接口:Serializable, Cloneable, Map
    直接已知子类:LinkedHashMap, PrinterStateReasons

    基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

    此实现假定哈希函数将元素正确分布在各桶之间,可为基本操作(getput)提供稳定的性能。迭代集合视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)的和成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。

    HashMap 的实例有两个参数影响其性能:初始容量加载因子容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,通过调用 rehash 方法将容量翻倍。

    通常,默认加载因子 (.75) 在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查询成本(在大多数 HashMap 类的操作中,包括 getput 操作,都反映了这一点)。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地降低 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作。

    如果很多映射关系要存储在 HashMap 实例中,则相对于按需执行自动的 rehash 操作以增大表的容量来说,使用足够大的初始容量创建它将使得映射关系能更有效地存储。

    注意,此实现不是同步的。如果多个线程同时访问此映射,而其中至少一个线程从结构上修改了该映射,则它必须 保持外部同步。(结构上的修改是指添加或删除一个或多个映射关系的操作;仅改变与实例已经包含的键关联的值不是结构上的修改。)这一般通过对自然封装该映射的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedMap 方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的不同步访问,如下所示:

     Map m = Collections.synchronizedMap(new HashMap(...));
    

    由所有此类的“集合视图方法”所返回的迭代器都是快速失败 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器自身的 removeadd 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间任意发生不确定行为的风险。

    注意,迭代器的快速失败行为不能得到保证,一般来说,存在不同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常程序的方式是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

    此类是 Java Collections Framework 的成员。

    6、java.util.TreeMap

    java.lang.Object
      继承者 java.util.AbstractMap
          继承者 java.util.TreeMap
    
    所有已实现的接口:Serializable, Cloneable, Map, SortedMap

    SortedMap 接口的基于红黑树的实现。此类保证了映射按照升序顺序排列关键字,根据使用的构造方法不同,可能会按照键的类的自然顺序 进行排序(参见 Comparable),或者按照创建时所提供的比较器进行排序。

    此实现为 containsKeygetputremove 操作提供了保证的 log(n) 时间开销。这些算法是 Cormen、Leiserson 和 Rivest 的《Introduction to Algorithms》中的算法的改编。

    注意,如果有序映射要正确实现 Map 接口,则有序映射所保持的顺序(无论是否明确提供比较器)都必须保持与等号一致。(请参见与等号一致 的精确定义的 ComparableComparator。)这也是因为 Map 接口是按照等号操作定义的,但映射使用它的 compareTo(或 compare)方法对所有键进行比较,因此从有序映射的观点来看,此方法认为相等的两个键就是相等的。即使顺序与等号不一致,有序映射的行为仍然 定义良好的;只不过没有遵守 Map 接口的常规约定。

    注意,此实现不是同步的。如果多个线程同时访问一个映射,并且其中至少一个线程从结构上修改了该映射,则其必须 保持外部同步。(结构上修改是指添加或删除一个或多个映射关系的操作;仅改变与现有键关联的值不是结构上的修改。)这一般通过对自然封装该映射的某个对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedMap 方法来“包装”该映射。最好在创建时完成这一操作,以防止对映射进行意外的不同步访问,如下所示:

         Map m = Collections.synchronizedMap(new TreeMap(...));
    

    由所有此类的“collection 视图方法”所返回的迭代器都是快速失败 的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器自身的 removeadd 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就完全失败,而不是冒着在将来不确定的时间任意发生不确定行为的风险。

    注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭代器的快速失败行为应该仅用于检测 bug。

    此类是Java Collections Framework 的成员。

    从以下版本开始: 1.2

    7、java.util.TreeSet

    java.lang.Object
      继承者 java.util.AbstractCollection
          继承者 java.util.AbstractSet
              继承者 java.util.TreeSet
    
    所有已实现的接口:Serializable, Cloneable, Iterable, Collection, Set, SortedSet

    此类实现 Set 接口,该接口由 TreeMap 实例支持。此类保证排序后的 set 按照升序排列元素,根据使用的构造方法不同,可能会按照元素的自然顺序 进行排序(参见 Comparable),或按照在创建 set 时所提供的比较器进行排序。

    此实现为基本操作(addremovecontains)提供了可保证的 log(n) 时间开销。

    注意,如果要正确实现 Set 接口,则 set 所维护的顺序(是否提供了显式比较器)必须为与等号一致(请参阅与等号一致 精确定义的 ComparableComparator)。这是因为 Set 接口根据 equals 操作进行定义,但 TreeSet 实例将使用其 compareTo(或 compare)方法执行所有的键比较,因此,从 set 的角度出发,该方法认为相等的两个键就是相等的。即使 set 的顺序与等号不一致,其行为也 定义良好的;它只是违背了 Set 接口的常规协定。

    注意,此实现不是同步的。如果多个线程同时访问一个 set,而其中至少一个线程修改了该 set,那么它必须 保持外部同步。通常通过对某个自然封装该 set 的对象进行同步来实现此操作。如果不存在此类对象,则 set 就应该使用 Collections.synchronizedSet 方法进行“包装”。此操作最好在创建时进行,以防止对 set 的意外非同步访问:

         SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));

    此类的 iterator 方法返回的迭代器是快速失败的:如果在迭代器创建后的任意时间修改 set(通过迭代器本身 remove 方法之外的任何其他方式),迭代器将抛出 ConcurrentModificationException。因此,在并发修改时,迭代器将快速而彻底地失败,而不会在以后的不确定时间有出现任意、无法确定行为的危险。

    注意,无法保证迭代器的快速失败行为,因为通常来说,不可能在非同步并发修改的情况下提供任何硬性保证。快速失败的迭代器将尽量抛出 ConcurrentModificationException。因此,为了获得其准确性而编写依赖此异常的程序的做法是错误的:迭代器的快速失败行为应当仅用于检测 bug。

    此类是Java Collections Framework 的成员。

    从以下版本开始:1.2
    8、java.util.HashSet
    java.lang.Object
      继承者 java.util.AbstractCollection
          继承者 java.util.AbstractSet
              继承者 java.util.HashSet
    
    所有已实现的接口:
    Serializable, Cloneable, Iterable, Collection, Set
    直接已知子类:
    JobStateReasons, LinkedHashSet

    此类实现 Set 接口,由哈希表(实际上是一个 HashMap 实例)支持。它不保证集合的迭代顺序;特别是它不保证该顺序恒久不变。此类允许使用 null 元素。

    此类为基本操作提供了稳定性能,这些基本操作包括 addremovecontainssize,假定哈希函数将这些元素正确地分布在桶中。对此集合进行迭代所需的时间与 HashSet 实例的大小(元素的数量)和底层 HashMap 实例(桶的数量)的“容量”的和成比例。因此,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。

    注意,此实现不是同步的。 如果多个线程同时访问一个集合,而其中至少一个线程修改了该集合,那么它必须 保持外部同步。这通常是通过对自然封装该集合的对象执行同步操作来完成的。如果不存在这样的对象,则应该使用 Collections.synchronizedSet 方法来“包装”集合。最好在创建时完成这一操作,以防止对 HashSet 实例进行意外的不同步访问:

         Set s = Collections.synchronizedSet(new HashSet(...));

    此类的 iterator 方法返回的迭代器是快速失败 的:在创建迭代器之后,如果对集合进行修改,除非通过迭代器自身的 remove 方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒将来在某个不确定时间发生任意不确定行为的风险。

    注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器在尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。

    此类是Java Collections Framework 的成员。

  • 阅读(647) | 评论(0) | 转发(0) |
    0

    上一篇:JAVA中的集合类

    下一篇:第四章 JComponent类

    给主人留下些什么吧!~~