分类: C/C++
2009-06-01 20:58:32
R.亨斯贝尔格著李忠翻译的《数学中的智巧》一书,介绍了法雷级数。这里每一行从0/1开始,以1/1结尾,其它数自左至右将所有的真分数按增加顺序排列;第n行是由所有分母小于或等于n的真分数组成,我们称为n阶法雷级数。如下表: F1: 0/1 1/1 F2: 0/1 1/2 1/1 F3: 0/1 1/3 1/2 2/3 1/1 F4: 0/1 1/4 1/3 1/2 2/3 3/4 1/1 F5: 0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1 F6:0/1 1/6 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/6 1/1 …………………………………… 这里我们想问的是第n行Fn的真分数的个数有多少个呢? 我们设Fn的个数为ψ(n), ψ(n)比 ψ(n-1)增加的个数是分母是n,分子比n小且与n互质的数的个数,这正是欧拉函数φ(n)。即 ψ(n)=ψ(n-1)+ φ(n) ψ(1)=1+φ(1) ψ(2)=ψ(1)+φ(2) ψ(3)=ψ(2)+φ(3) …………………… ψ(n)= ψ(n-1)+ φ(n) 所以 ψ(n)=1+φ(1)+φ(2)+φ(3)+……+φ(n) 很容易证明,当n≥3时,欧拉函数φ(n)是个偶数。由此我们得到除ψ(1)=2是偶数外,法雷级数其它各级的个数都是奇数,并且许多是素数。ψ(1)=2,ψ(2)=3,ψ(3)=5,ψ(4)=7,ψ(5)=11,ψ(6)=13,ψ(7)=19,ψ(8)=23,ψ(9)=29,……。 |