Chinaunix首页 | 论坛 | 博客
  • 博客访问: 526012
  • 博文数量: 87
  • 博客积分: 4086
  • 博客等级: 上校
  • 技术积分: 900
  • 用 户 组: 普通用户
  • 注册时间: 2007-12-23 15:55
文章分类

全部博文(87)

文章存档

2012年(3)

2010年(13)

2009年(7)

2008年(64)

我的朋友

分类: LINUX

2008-06-01 11:37:51

最近做了博创2410开发板上uda1341的驱动,从网上下了一些源代码,直接拿过来在2.6.24上行不通。然后就自己去看内核中和dma相关的代码,最终把驱动弄好了,能顺利播放音乐了。把移植过程介绍一下,供大家参考。
 
遇到的第一个问题是dma通道的映射问题。
通道映射不正确的话,uda1341就没有输出。这个问题我觉得是移植过程中解决的主要问题。关于2.6.24中dma的基本建立过程在我的另一篇文章中有介绍,大家可以看一下:
 
然后直接介绍移植过程中需要修改的地方。首先还是dma通道的问题。在内核的arch/arm/plat-s3c24xx/dma.c的s3c2410_dma_map_channel函数中修改如下:
static struct s3c2410_dma_chan *s3c2410_dma_map_channel(int channel)
{
 struct s3c24xx_dma_order_ch *ord = NULL;
 struct s3c24xx_dma_map *ch_map;
 struct s3c2410_dma_chan *dmach;
 int ch;
 if (dma_sel.map == NULL || channel > dma_sel.map_size)
  return NULL;
 ch_map = dma_sel.map + channel;
 /* first, try the board mapping */
#if 0                                            //这里
 if (dma_order) {
  ord = &dma_order->channels[channel];
  for (ch = 0; ch < dma_channels; ch++) {
   if (!is_channel_valid(ord->list[ch]))
    continue;
   if (s3c2410_chans[ord->list[ch]].in_use == 0) {
    ch = ord->list[ch] & ~DMA_CH_VALID;
    goto found;
   }
  }
  if (ord->flags & DMA_CH_NEVER)
   return NULL;
 }
#endif                                           //这里
 /* second, search the channel map for first free */
就是注释掉一段代码就行了。
然后,还是同一个文件中,修改这个函数:s3c2410_dma_enqueue
这个函数的结尾:
 } else if (chan->state == S3C2410_DMA_IDLE) {
  if (chan->flags & S3C2410_DMAF_AUTOSTART) {
   s3c2410_dma_ctrl(channel, S3C2410_DMAOP_START); //修改的只有这一行
  }
 }
 local_irq_restore(flags);
 return 0;
}
 
上面注释的那行,把第一个参数chan->number,换成了现在的channel。
 
ok,这个文件就改这些。
下面贴出uda1341.c这个文件:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define DMA_BUF_WR 1
#define DMA_BUF_RD 0
#define DMA_CH1 DMACH_I2S_IN
#define DMA_CH2 DMACH_I2S_OUT
static struct clk *iis_clock;
static void __iomem *iis_base;
static struct s3c2410_dma_client s3c2410iis_dma_out= {
 .name = "I2SSDO",
};
static struct s3c2410_dma_client s3c2410iis_dma_in = {
 .name = "I2SSDI",
};
static void init_s3c2410_iis_bus(void);
#define DEF_VOLUME 65
/* UDA1341 Register bits */
#define UDA1341_ADDR 0x14
#define UDA1341_REG_DATA0 (UDA1341_ADDR + 0)
#define UDA1341_REG_STATUS (UDA1341_ADDR + 2)
/* status control */
#define STAT0 (0x00)
#define STAT0_RST (1 << 6)
#define STAT0_SC_MASK (3 << 4)
#define STAT0_SC_512FS (0 << 4)
#define STAT0_SC_384FS (1 << 4)
#define STAT0_SC_256FS (2 << 4)
#define STAT0_IF_MASK (7 << 1)
#define STAT0_IF_I2S (0 << 1)
#define STAT0_IF_LSB16 (1 << 1)
#define STAT0_IF_LSB18 (2 << 1)
#define STAT0_IF_LSB20 (3 << 1)
#define STAT0_IF_MSB (4 << 1)
#define STAT0_IF_LSB16MSB (5 << 1)
#define STAT0_IF_LSB18MSB (6 << 1)
#define STAT0_IF_LSB20MSB (7 << 1)
#define STAT0_DC_FILTER (1 << 0)
#define STAT0_DC_NO_FILTER (0 << 0)
#define STAT1 (0x80)
#define STAT1_DAC_GAIN (1 << 6) /* gain of DAC */
#define STAT1_ADC_GAIN (1 << 5) /* gain of ADC */
#define STAT1_ADC_POL (1 << 4) /* polarity of ADC */
#define STAT1_DAC_POL (1 << 3) /* polarity of DAC */
#define STAT1_DBL_SPD (1 << 2) /* double speed playback */
#define STAT1_ADC_ON (1 << 1) /* ADC powered */
#define STAT1_DAC_ON (1 << 0) /* DAC powered */
/* data0 direct control */
#define DATA0 (0x00)
#define DATA0_VOLUME_MASK (0x3f)
#define DATA0_VOLUME(x) (x)
#define DATA1 (0x40)
#define DATA1_BASS(x) ((x) << 2)
#define DATA1_BASS_MASK (15 << 2)
#define DATA1_TREBLE(x) ((x))
#define DATA1_TREBLE_MASK (3)
#define DATA2 (0x80)
#define DATA2_PEAKAFTER (0x1 << 5)
#define DATA2_DEEMP_NONE (0x0 << 3)
#define DATA2_DEEMP_32KHz (0x1 << 3)
#define DATA2_DEEMP_44KHz (0x2 << 3)
#define DATA2_DEEMP_48KHz (0x3 << 3)
#define DATA2_MUTE (0x1 << 2)
#define DATA2_FILTER_FLAT (0x0 << 0)
#define DATA2_FILTER_MIN (0x1 << 0)
#define DATA2_FILTER_MAX (0x3 << 0)
/* data0 extend control */
#define EXTADDR(n) (0xc0 | (n))
#define EXTDATA(d) (0xe0 | (d))
#define EXT0 0
#define EXT0_CH1_GAIN(x) (x)
#define EXT1 1
#define EXT1_CH2_GAIN(x) (x)
#define EXT2 2
#define EXT2_MIC_GAIN_MASK (7 << 2)
#define EXT2_MIC_GAIN(x) ((x) << 2)
#define EXT2_MIXMODE_DOUBLEDIFF (0)
#define EXT2_MIXMODE_CH1 (1)
#define EXT2_MIXMODE_CH2 (2)
#define EXT2_MIXMODE_MIX (3)
#define EXT4 4
#define EXT4_AGC_ENABLE (1 << 4)
#define EXT4_INPUT_GAIN_MASK (3)
#define EXT4_INPUT_GAIN(x) ((x) & 3)
#define EXT5 5
#define EXT5_INPUT_GAIN(x) ((x) >> 2)
#define EXT6 6
#define EXT6_AGC_CONSTANT_MASK (7 << 2)
#define EXT6_AGC_CONSTANT(x) ((x) << 2)
#define EXT6_AGC_LEVEL_MASK (3)
#define EXT6_AGC_LEVEL(x) (x)
#define AUDIO_NAME "UDA1341"
#define AUDIO_NAME_VERBOSE "UDA1341 audio driver"
#define AUDIO_FMT_MASK (AFMT_S16_LE)
#define AUDIO_FMT_DEFAULT (AFMT_S16_LE)
#define AUDIO_CHANNELS_DEFAULT 2
#define AUDIO_RATE_DEFAULT 8000
#define AUDIO_NBFRAGS_DEFAULT 8
#define AUDIO_FRAGSIZE_DEFAULT 8192
#define S_CLOCK_FREQ 384

typedef struct {
 int size; /* buffer size */
 char *start; /* point to actual buffer */
 dma_addr_t dma_addr; /* physical buffer address */
 struct semaphore sem; /* down before touching the buffer */
 int master; /* owner for buffer allocation, contain size when true */
} audio_buf_t;
typedef struct {
 audio_buf_t *buffers; /* pointer to audio buffer structures */
 audio_buf_t *buf; /* current buffer used by read/write */
 u_int buf_idx; /* index for the pointer above */
 u_int fragsize; /* fragment i.e. buffer size */
 u_int nbfrags; /* nbr of fragments */
        enum dma_ch dmach;
} audio_stream_t;
static audio_stream_t output_stream;
static audio_stream_t input_stream;
#define NEXT_BUF(_s_,_b_) { \
        (_s_)->_b_##_idx++; \
        (_s_)->_b_##_idx %= (_s_)->nbfrags; \
        (_s_)->_b_ = (_s_)->buffers + (_s_)->_b_##_idx; }
 
static u_int audio_rate;
static int audio_channels;
static int audio_fmt;
static u_int audio_fragsize;
static u_int audio_nbfrags;

static int audio_rd_refcount;
static int audio_wr_refcount;
#define audio_active (audio_rd_refcount | audio_wr_refcount)
static int audio_dev_dsp;
static int audio_dev_mixer;
static int audio_mix_modcnt;
static int uda1341_volume;
static u8 uda_sampling;
static int uda1341_boost;
static int mixer_igain=0x4; /* -6db*/
static void uda1341_l3_address(u8 data)
{
 int i;
 unsigned long flags;
 
 local_irq_save(flags);
 
 s3c2410_gpio_setpin(S3C2410_GPG9,1);
 s3c2410_gpio_setpin(S3C2410_GPG0,0);
 udelay(10);
 s3c2410_gpio_setpin(S3C2410_GPG8,0);
 udelay(5);
 
 for (i = 0; i < 8; i++) {
  if (data & 0x1) {
   s3c2410_gpio_setpin(S3C2410_GPG9,0);
   s3c2410_gpio_setpin(S3C2410_GPG0,1);
   udelay(1);
   s3c2410_gpio_setpin(S3C2410_GPG9,1);
   udelay(1);
  } else {
   s3c2410_gpio_setpin(S3C2410_GPG9,0);
   s3c2410_gpio_setpin(S3C2410_GPG0,0);
   udelay(1);
   s3c2410_gpio_setpin(S3C2410_GPG9,1);
   udelay(1);
  }
  data >>= 1;
 }
 udelay(5);
 s3c2410_gpio_setpin(S3C2410_GPG8,1);
 udelay(1);
 local_irq_restore(flags);
}
static void uda1341_l3_data(u8 data)
{
 int i;
 unsigned long flags;
 local_irq_save(flags);
 s3c2410_gpio_setpin(S3C2410_GPG8,1);
 udelay(5);
 
 for (i = 0; i < 8; i++) {
  if (data & 0x1) {
   s3c2410_gpio_setpin(S3C2410_GPG9,0);
   s3c2410_gpio_setpin(S3C2410_GPG0,1);
   udelay(1);
   s3c2410_gpio_setpin(S3C2410_GPG9,1);
   udelay(1);
  } else {
   s3c2410_gpio_setpin(S3C2410_GPG9,0);
   s3c2410_gpio_setpin(S3C2410_GPG0,0);
   udelay(1);
   s3c2410_gpio_setpin(S3C2410_GPG9,1);
   udelay(1);
  }   
  data >>= 1;
 }
 udelay(1);
 s3c2410_gpio_setpin(S3C2410_GPG8, 0);
 udelay(2);
 s3c2410_gpio_setpin(S3C2410_GPG8, 1);      
 local_irq_restore(flags);
}
static void audio_clear_buf(audio_stream_t * s)
{
   s3c2410_dma_ctrl(s->dmach, S3C2410_DMAOP_FLUSH);
 
 if (s->buffers) {
  int frag;
  
  for (frag = 0; frag < s->nbfrags; frag++) {
   if (!s->buffers[frag].master)
    continue;
   dma_free_coherent(NULL,
    s->buffers[frag].master,
    s->buffers[frag].start,
    s->buffers[frag].dma_addr);
  }
  kfree(s->buffers);
  s->buffers = NULL;
 }
 
 s->buf_idx = 0;
 s->buf = NULL;
}
static int audio_setup_buf(audio_stream_t * s)
{
 int frag;
 int dmasize = 0;
 char *dmabuf = 0;
 dma_addr_t dmaphys = 0;
 
 if (s->buffers)
   return -EBUSY;
 
 s->nbfrags = audio_nbfrags;
 s->fragsize = audio_fragsize;
 
 s->buffers = (audio_buf_t *)
  kmalloc(sizeof(audio_buf_t) * s->nbfrags, GFP_KERNEL);
 if (!s->buffers)
  goto err;
 memset(s->buffers, 0, sizeof(audio_buf_t) * s->nbfrags);
 
 for (frag = 0; frag < s->nbfrags; frag++) {
  audio_buf_t *b = &s->buffers[frag];
  
  if (!dmasize) {
   dmasize = (s->nbfrags - frag) * s->fragsize;
   do {
    dmabuf = dma_alloc_coherent(NULL, dmasize, &dmaphys, GFP_KERNEL|GFP_DMA);
    if (!dmabuf)
     dmasize -= s->fragsize;
   } while (!dmabuf && dmasize);
   if (!dmabuf)
    goto err;
   b->master = dmasize;
  }
  
  b->start = dmabuf;
  b->dma_addr = dmaphys;
  sema_init(&b->sem, 1);
  
  dmabuf += s->fragsize;
  dmaphys += s->fragsize;
  dmasize -= s->fragsize;
 }
 
 s->buf_idx = 0;
 s->buf = &s->buffers[0];
 return 0;
 
err:
 printk(AUDIO_NAME ": unable to allocate audio memory\n ");
 audio_clear_buf(s);
 return -ENOMEM;
}
static void audio_dmaout_done_callback(struct s3c2410_dma_chan *ch, void *buf, int size,enum s3c2410_dma_buffresult result)
{
 audio_buf_t *b = (audio_buf_t *) buf;
 up(&b->sem);
 wake_up(&b->sem.wait);
}
static void audio_dmain_done_callback(struct s3c2410_dma_chan *ch, void *buf, int size,enum s3c2410_dma_buffresult result)
{
 audio_buf_t *b = (audio_buf_t *) buf;
 b->size = size;
 up(&b->sem);
 wake_up(&b->sem.wait);
}
/* using when write */
static int audio_sync(struct file *file)
{
 audio_stream_t *s = &output_stream;
 audio_buf_t *b = s->buf;
 
 printk("audio_sync\n");
 
 if (!s->buffers)
  return 0;
 
 if (b->size != 0) {
  down(&b->sem);
  s3c2410_dma_enqueue(s->dmach, (void *) b, b->dma_addr, b->size);
  b->size = 0;
  NEXT_BUF(s, buf);
 }
 
 b = s->buffers + ((s->nbfrags + s->buf_idx - 1) % s->nbfrags);
 if (down_interruptible(&b->sem))
  return -EINTR;
 up(&b->sem);
 
 return 0;
}
static inline int copy_from_user_mono_stereo(char *to, const char *from, int count)
{
 u_int *dst = (u_int *)to;
 const char *end = from + count;
 
 if (!access_ok(VERIFY_READ, from, count))
  return -EFAULT;
 
 if ((int)from & 0x2) {
  u_int v;
  __get_user(v, (const u_short *)from); from += 2;
  *dst++ = v | (v << 16);
 }
 
 while (from < end-2) {
  u_int v, x, y;
  __get_user(v, (const u_int *)from); from += 4;
  x = v << 16;
  x |= x >> 16;
  y = v >> 16;
  y |= y << 16;
  *dst++ = x;
  *dst++ = y;
 }
 
 if (from < end) {
  u_int v;
  __get_user(v, (const u_short *)from);
  *dst = v | (v << 16);
 }
 
 return 0;
}
static ssize_t smdk2410_audio_write(struct file *file, const char *buffer,
size_t count, loff_t * ppos)
{
 const char *buffer0 = buffer;
 audio_stream_t *s = &output_stream;
 int chunksize, ret = 0;
 switch (file->f_flags & O_ACCMODE) {
  case O_WRONLY:
  case O_RDWR:
  break;
  default:
   return -EPERM;
 }
 if (!s->buffers && audio_setup_buf(s))
  return -ENOMEM;
 count &= ~0x03;
 while (count > 0) {
  audio_buf_t *b = s->buf;
  if (file->f_flags & O_NONBLOCK) {
   ret = -EAGAIN;
   if (down_trylock(&b->sem))
    break;
  } else {
   ret = -ERESTARTSYS;
   if (down_interruptible(&b->sem))
   break;
  }
  if (audio_channels == 2) {
   chunksize = s->fragsize - b->size;
   if (chunksize > count)
   chunksize = count;
   if (copy_from_user(b->start + b->size, buffer, chunksize)) {
    up(&b->sem);
    return -EFAULT;
   }
   b->size += chunksize;
  } else {
   chunksize = (s->fragsize - b->size) >> 1;
   if (chunksize > count)
   chunksize = count;
   if (copy_from_user_mono_stereo(b->start + b->size,
buffer, chunksize)) {
   up(&b->sem);
   return -EFAULT;
   }
   b->size += chunksize*2;
  }
  buffer += chunksize;
  count -= chunksize;
  if (b->size < s->fragsize) {
  up(&b->sem);
  break;
  }
                ret = s3c2410_dma_enqueue(s->dmach, (void *)b, b->dma_addr, b->size);
  if(ret) {
   printk("dma enqueue failed.\n");
   return ret;
  }
  b->size = 0;
  NEXT_BUF(s, buf);
 }
 if ((buffer - buffer0))
 ret = buffer - buffer0;
 return ret;
}

static ssize_t smdk2410_audio_read(struct file *file, char *buffer,
           size_t count, loff_t * ppos)
{
 const char *buffer0 = buffer;
 audio_stream_t *s = &input_stream;
 int chunksize, ret = 0;
 
 printk("audio_read: count=%d\n", count);
 
 if (ppos != &file->f_pos)
  return -ESPIPE;
 
 if (!s->buffers) {
  int i;
  
  if (audio_setup_buf(s))
   return -ENOMEM;
  
  for (i = 0; i < s->nbfrags; i++) {
   audio_buf_t *b = s->buf;
   down(&b->sem);
   s3c2410_dma_enqueue(s->dmach, (void *) b, b->dma_addr, s->fragsize);
   NEXT_BUF(s, buf);
  }
 }
 
 while (count > 0) {
  audio_buf_t *b = s->buf;
  
  /* Wait for a buffer to become full */
  if (file->f_flags & O_NONBLOCK) {
   ret = -EAGAIN;
   if (down_trylock(&b->sem))
    break;
  } else {
   ret = -ERESTARTSYS;
   if (down_interruptible(&b->sem))
    break;
  }
  
  chunksize = b->size;
  if (chunksize > count)
   chunksize = count;
  
  if (copy_to_user(buffer, b->start + s->fragsize - b->size,
   chunksize)) {
   up(&b->sem);
   return -EFAULT;
  }
  
  b->size -= chunksize;
  
  buffer += chunksize;
  count -= chunksize;
  if (b->size > 0) {
   up(&b->sem);
   break;
  }
  
  /* Make current buffer available for DMA again */
  s3c2410_dma_enqueue(s->dmach, (void *) b, b->dma_addr, s->fragsize);
  
  NEXT_BUF(s, buf);
 }
 
 if ((buffer - buffer0))
  ret = buffer - buffer0;
 
 printk("audio_read: return=%d\n", ret);
 
 return ret;
}

static unsigned int smdk2410_audio_poll(struct file *file,
          struct poll_table_struct *wait)
{
 unsigned int mask = 0;
 int i;
 
 printk("audio_poll(): mode=%s\n",
  (file->f_mode & FMODE_WRITE) ? "w" : "");
  
 
 if (file->f_mode & FMODE_READ) {
  if (!input_stream.buffers && audio_setup_buf(&input_stream))
   return -ENOMEM;
  poll_wait(file, &input_stream.buf->sem.wait, wait);
  
  for (i = 0; i < input_stream.nbfrags; i++) {
   if (atomic_read(&input_stream.buffers[i].sem.count) > 0)
    mask |= POLLIN | POLLWRNORM;
   break;
  }
 }
 
 
 if (file->f_mode & FMODE_WRITE) {
  if (!output_stream.buffers && audio_setup_buf(&output_stream))
   return -ENOMEM;
  poll_wait(file, &output_stream.buf->sem.wait, wait);
  
  for (i = 0; i < output_stream.nbfrags; i++) {
   if (atomic_read(&output_stream.buffers[i].sem.count) > 0)
    mask |= POLLOUT | POLLWRNORM;
   break;
  }
 }
 
 return mask;
}

static loff_t smdk2410_audio_llseek(struct file *file, loff_t offset,
         int origin)
{
 return -ESPIPE;
}

static int smdk2410_mixer_ioctl(struct inode *inode, struct file *file,
        unsigned int cmd, unsigned long arg)
{
 int ret;
 long val = 0;
 
 switch (cmd) {
 case SOUND_MIXER_INFO:
  {
   mixer_info info;
   strncpy(info.id, "UDA1341", sizeof(info.id));
   strncpy(info.name,"Philips UDA1341", sizeof(info.name));
   info.modify_counter = audio_mix_modcnt;
   return copy_to_user((void *)arg, &info, sizeof(info));
  }
  
 case SOUND_OLD_MIXER_INFO:
  {
   _old_mixer_info info;
   strncpy(info.id, "UDA1341", sizeof(info.id));
   strncpy(info.name,"Philips UDA1341", sizeof(info.name));
   return copy_to_user((void *)arg, &info, sizeof(info));
  }
  
 case SOUND_MIXER_READ_STEREODEVS:
  return put_user(0, (long *) arg);
  
 case SOUND_MIXER_READ_CAPS:
  val = SOUND_CAP_EXCL_INPUT;
  return put_user(val, (long *) arg);
  
 case SOUND_MIXER_WRITE_VOLUME:
  ret = get_user(val, (long *) arg);
  if (ret)
   return ret;
  uda1341_volume = 63 - (((val & 0xff) + 1) * 63) / 100;
  uda1341_l3_address(UDA1341_REG_DATA0);
  uda1341_l3_data(uda1341_volume);
  break;
  
 case SOUND_MIXER_READ_VOLUME:
  val = ((63 - uda1341_volume) * 100) / 63;
  val |= val << 8;
  return put_user(val, (long *) arg);
  
 case SOUND_MIXER_READ_IGAIN:
  val = ((31- mixer_igain) * 100) / 31;
  return put_user(val, (int *) arg);
  
 case SOUND_MIXER_WRITE_IGAIN:
  ret = get_user(val, (int *) arg);
  if (ret)
   return ret;
  mixer_igain = 31 - (val * 31 / 100);
  /* use mixer gain channel 1*/
  uda1341_l3_address(UDA1341_REG_DATA0);
  uda1341_l3_data(EXTADDR(EXT0));
  uda1341_l3_data(EXTDATA(EXT0_CH1_GAIN(mixer_igain)));
  break;
  
 default:
  
  return -ENOSYS;
 }
 
 audio_mix_modcnt++;
 return 0;
}
 
static int iispsr_value(int s_bit_clock, int sample_rate)
{
 unsigned int i,j,prescaler = 0;
 i = s_bit_clock*sample_rate;
 prescaler = clk_get_rate(iis_clock)/i;
 j = clk_get_rate(iis_clock)%i;
 if(j<(i/2))
   return (prescaler - 1);
 return prescaler;
}
static int audio_set_dsp_speed(long val)
{
  unsigned long iispsr = 0;
  unsigned long value = 0;
  value = iispsr_value(S_CLOCK_FREQ, val);
  iispsr = (value<<5)|value;
   
  writel(iispsr, iis_base + S3C2410_IISPSR);
  iispsr = readl(iis_base + S3C2410_IISPSR);
  return (audio_rate = val);
}
static int smdk2410_audio_ioctl(struct inode *inode, struct file *file,
    uint cmd, ulong arg)
{
 long val;
 switch (cmd) {
  case SNDCTL_DSP_SETFMT:
   get_user(val, (long *) arg);
   if (val & AUDIO_FMT_MASK) {
    audio_fmt = val;
    break;
   } else
    return -EINVAL;
  case SNDCTL_DSP_CHANNELS:
  case SNDCTL_DSP_STEREO:
   get_user(val, (long *) arg);
   if (cmd == SNDCTL_DSP_STEREO)
    val = val ? 2 : 1;
   if (val != 1 && val != 2)
    return -EINVAL;
   audio_channels = val;
   break;
  case SOUND_PCM_READ_CHANNELS:
   put_user(audio_channels, (long *) arg);
   break;
  case SNDCTL_DSP_SPEED:
   get_user(val, (long *) arg);
   val = audio_set_dsp_speed(val);
   if (val < 0)
    return -EINVAL;
   put_user(val, (long *) arg);
   break;
  case SOUND_PCM_READ_RATE:
   put_user(audio_rate, (long *) arg);
   break;
  case SNDCTL_DSP_GETFMTS:
   put_user(AUDIO_FMT_MASK, (long *) arg);
   break;
  case SNDCTL_DSP_GETBLKSIZE:
   if(file->f_mode & FMODE_WRITE)
    return put_user(audio_fragsize, (long *) arg);
   else
    return put_user(audio_fragsize, (int *) arg);
  case SNDCTL_DSP_SETFRAGMENT:
   if (file->f_mode & FMODE_WRITE) {
    if (output_stream.buffers)
     return -EBUSY;
    get_user(val, (long *) arg);
    audio_fragsize = 1 << (val & 0xFFFF);
    if (audio_fragsize < 16)
     audio_fragsize = 16;
    if (audio_fragsize > 16384)
     audio_fragsize = 16384;
    audio_nbfrags = (val >> 16) & 0x7FFF;
    if (audio_nbfrags < 2)
     audio_nbfrags = 2;
    if (audio_nbfrags * audio_fragsize > 128 * 1024)
     audio_nbfrags = 128 * 1024 / audio_fragsize;
    if (audio_setup_buf(&output_stream))
     return -ENOMEM;
   }
   if (file->f_mode & FMODE_READ) {
    if (input_stream.buffers)
     return -EBUSY;
    get_user(val, (int *) arg);
    audio_fragsize = 1 << (val & 0xFFFF);
    if (audio_fragsize < 16)
     audio_fragsize = 16;
    if (audio_fragsize > 16384)
     audio_fragsize = 16384;
    audio_nbfrags = (val >> 16) & 0x7FFF;
    if (audio_nbfrags < 2)
     audio_nbfrags = 2;
    if (audio_nbfrags * audio_fragsize > 128 * 1024)
     audio_nbfrags = 128 * 1024 / audio_fragsize;
    if (audio_setup_buf(&input_stream))
     return -ENOMEM;
   }
   break;
  case SNDCTL_DSP_SYNC:
   return audio_sync(file);
  case SNDCTL_DSP_GETOSPACE:
  {
   audio_stream_t *s = &output_stream;
   audio_buf_info *inf = (audio_buf_info *) arg;
   int err = access_ok(VERIFY_WRITE, inf, sizeof(*inf));
   int i;
   int frags = 0, bytes = 0;
   if (err)
    return err;
   for (i = 0; i < s->nbfrags; i++) {
    if (atomic_read(&s->buffers[i].sem.count) > 0) {
     if (s->buffers[i].size == 0) frags++;
     bytes += s->fragsize - s->buffers[i].size;
    }
   }
   put_user(frags, &inf->fragments);
   put_user(s->nbfrags, &inf->fragstotal);
   put_user(s->fragsize, &inf->fragsize);
   put_user(bytes, &inf->bytes);
   break;
  }
  case SNDCTL_DSP_GETISPACE:
  {
   audio_stream_t *s = &input_stream;
   audio_buf_info *inf = (audio_buf_info *) arg;
   int err = access_ok(VERIFY_WRITE, inf, sizeof(*inf));
   int i;
   int frags = 0, bytes = 0;
   if (!(file->f_mode & FMODE_READ))
    return -EINVAL;
   if (err)
    return err;
   for(i = 0; i < s->nbfrags; i++){
    if (atomic_read(&s->buffers[i].sem.count) > 0)
    {
     if (s->buffers[i].size == s->fragsize)
      frags++;
     bytes += s->buffers[i].size;
    }
   }
   put_user(frags, &inf->fragments);
   put_user(s->nbfrags, &inf->fragstotal);
   put_user(s->fragsize, &inf->fragsize);
   put_user(bytes, &inf->bytes);
   break;
  }
  case SNDCTL_DSP_RESET:
   if (file->f_mode & FMODE_READ) {
    audio_clear_buf(&input_stream);
   }
   if (file->f_mode & FMODE_WRITE) {
    audio_clear_buf(&output_stream);
   }
   return 0;
  case SNDCTL_DSP_NONBLOCK:
   file->f_flags |= O_NONBLOCK;
   return 0;
  case SNDCTL_DSP_POST:
  case SNDCTL_DSP_SUBDIVIDE:
  case SNDCTL_DSP_GETCAPS:
  case SNDCTL_DSP_GETTRIGGER:
  case SNDCTL_DSP_SETTRIGGER:
  case SNDCTL_DSP_GETIPTR:
  case SNDCTL_DSP_GETOPTR:
  case SNDCTL_DSP_MAPINBUF:
  case SNDCTL_DSP_MAPOUTBUF:
  case SNDCTL_DSP_SETSYNCRO:
  case SNDCTL_DSP_SETDUPLEX:
   return -ENOSYS;
  default:
   return smdk2410_mixer_ioctl(inode, file, cmd, arg);
 }
 return 0;
}

static int smdk2410_audio_open(struct inode *inode, struct file *file)
{
 int cold = !audio_active;
 printk("audio open\n");
 if ((file->f_flags & O_ACCMODE) == O_RDONLY) {
  if (audio_rd_refcount || audio_wr_refcount)
   return -EBUSY;
  audio_rd_refcount++;
 } else if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
  if (audio_wr_refcount)
   return -EBUSY;
  audio_wr_refcount++;
 } else if ((file->f_flags & O_ACCMODE) == O_RDWR) {
  if (audio_rd_refcount || audio_wr_refcount)
   return -EBUSY;
  audio_rd_refcount++;
  audio_wr_refcount++;
 } else
  return -EINVAL;
 
 if (cold) {
  audio_rate = AUDIO_RATE_DEFAULT;
  audio_channels = AUDIO_CHANNELS_DEFAULT;
  audio_fragsize = AUDIO_FRAGSIZE_DEFAULT;
  audio_nbfrags = AUDIO_NBFRAGS_DEFAULT;
 
  init_s3c2410_iis_bus();
  if ((file->f_mode & FMODE_WRITE)){
    audio_clear_buf(&output_stream);
  }
 
  if ((file->f_mode & FMODE_READ))
    audio_clear_buf(&input_stream);
 
 }
 return 0;
}

static int smdk2410_mixer_open(struct inode *inode, struct file *file)
{
 return 0;
}

static int smdk2410_audio_release(struct inode *inode, struct file *file)
{
 if (file->f_mode & FMODE_READ) {
  if (audio_rd_refcount == 1)
   audio_clear_buf(&input_stream);
  audio_rd_refcount = 0;
 }
 
 if(file->f_mode & FMODE_WRITE) {
  if (audio_wr_refcount == 1) {
   audio_sync(file);
   audio_clear_buf(&output_stream);
   audio_wr_refcount = 0;
  }
 }
 
 return 0;
}

static int smdk2410_mixer_release(struct inode *inode, struct file *file)
{
 return 0;
}

static struct file_operations smdk2410_audio_fops = {
 .llseek = smdk2410_audio_llseek,
 .write = smdk2410_audio_write,
 .read = smdk2410_audio_read,
 .poll = smdk2410_audio_poll,
 .ioctl = smdk2410_audio_ioctl,
 .open = smdk2410_audio_open,
 .release = smdk2410_audio_release
};
static struct file_operations smdk2410_mixer_fops = {
 .ioctl = smdk2410_mixer_ioctl,
 .open =  smdk2410_mixer_open,
 .release = smdk2410_mixer_release
};
static void init_uda1341(void)
{
        unsigned long flags;
 uda1341_volume = 62 - ((DEF_VOLUME * 61) / 100);
 uda1341_boost = 0;
 uda_sampling = DATA2_DEEMP_NONE;
 uda_sampling &= ~(DATA2_MUTE);
 local_irq_save(flags);
 s3c2410_gpio_setpin(S3C2410_GPG9, 1);
 s3c2410_gpio_setpin(S3C2410_GPG8, 1);
 local_irq_restore(flags);
 uda1341_l3_address(UDA1341_REG_STATUS);
 uda1341_l3_data(STAT0_RST);
   
 uda1341_l3_address(UDA1341_REG_STATUS);
 uda1341_l3_data(STAT0_SC_384FS | STAT0_IF_MSB | STAT0_DC_FILTER);   
 uda1341_l3_data(STAT1 | STAT1_DAC_GAIN | STAT1_ADC_GAIN | STAT1_ADC_ON | STAT1_DAC_ON);
 uda1341_l3_address(UDA1341_REG_DATA0);
 uda1341_l3_data(DATA0 |DATA0_VOLUME(uda1341_volume)); 
 uda1341_l3_data(DATA1 |DATA1_BASS(uda1341_boost)| DATA1_TREBLE(0));
 uda1341_l3_data(DATA2 |uda_sampling);
 uda1341_l3_data(EXTADDR(EXT2));
 uda1341_l3_data(EXTDATA(EXT2_MIC_GAIN(0x6)| EXT2_MIXMODE_CH2));
 uda1341_l3_data(EXTADDR(EXT5));
 uda1341_l3_data(EXTDATA(0x7));
 local_irq_save(flags);
 s3c2410_gpio_setpin(S3C2410_GPG9, 1);
 s3c2410_gpio_setpin(S3C2410_GPG8, 0);
 local_irq_restore(flags);
}
static void init_s3c2410_iis_bus(void){
 unsigned long iiscon, iismod, iisfcon;
 
 clk_enable(iis_clock);
 
 iiscon = iismod = iisfcon = 0;
 
 iiscon |= S3C2410_IISCON_PSCEN; // Enable prescaler
 iiscon |= S3C2410_IISCON_IISEN; // Enable interface
 iiscon |= S3C2410_IISCON_RXDMAEN; //Enable RX DMA service request
 iiscon |= S3C2410_IISCON_TXDMAEN; //Enable TX DMA service request
 
 iismod |= S3C2410_IISMOD_LR_LLOW; // Low for left channel
 iismod |= S3C2410_IISMOD_MSB;
 iismod |= S3C2410_IISMOD_16BIT; // Serial data bit/channel is 16 bit
 iismod |= S3C2410_IISMOD_384FS; // Master clock freq = 384 fs
 iismod |= S3C2410_IISMOD_TXRXMODE; //Set RX Mode
 iismod |= S3C2410_IISMOD_32FS; // 32 fs
 
 iisfcon|= S3C2410_IISFCON_RXDMA; //Set RX FIFO acces mode to DMA
 iisfcon|= S3C2410_IISFCON_RXENABLE; //Enable RX Fifo
 iisfcon|= S3C2410_IISFCON_TXDMA; //Set RX FIFO acces mode to DMA
 iisfcon|= S3C2410_IISFCON_TXENABLE;
 audio_set_dsp_speed(44100);
 
 writel(iismod, iis_base + S3C2410_IISMOD);
 writel(iisfcon, iis_base + S3C2410_IISFCON);
 writel(iiscon, iis_base + S3C2410_IISCON);
}
static int __init audio_init_dma(audio_stream_t * s, char *desc)
{
 int ret ;
 enum s3c2410_dmasrc source;
 int hwcfg;
 unsigned long devaddr;
 int dcon;
 unsigned int flags = 0;
 
 if(s->dmach == DMA_CH2){
  source = S3C2410_DMASRC_MEM;
  hwcfg = 3;
  devaddr = 0x55000010;
  dcon = 0xa0800000;
  flags = S3C2410_DMAF_AUTOSTART;
  
  ret = s3c2410_dma_request(s->dmach, &s3c2410iis_dma_out, NULL);
  s3c2410_dma_devconfig(s->dmach, source, hwcfg, devaddr);
  s3c2410_dma_config(s->dmach, 2, dcon);
  s3c2410_dma_set_buffdone_fn(s->dmach, audio_dmaout_done_callback);
  s3c2410_dma_setflags(s->dmach, flags);
  return ret;
 }
 else if(s->dmach == DMA_CH1){
  source =S3C2410_DMASRC_HW;
  hwcfg =3;
  devaddr = 0x55000010;
  dcon = 0xa2900000;
  flags = S3C2410_DMAF_AUTOSTART;
  
  ret = s3c2410_dma_request(s->dmach, &s3c2410iis_dma_in, NULL);
  s3c2410_dma_devconfig(s->dmach, source, hwcfg, devaddr);
  s3c2410_dma_config(s->dmach, 2, dcon);
  s3c2410_dma_set_buffdone_fn(s->dmach, audio_dmain_done_callback);
  s3c2410_dma_setflags(s->dmach, flags);
  return ret ;
 }
 else
  return 1;
}
static int audio_clear_dma(audio_stream_t * s,struct s3c2410_dma_client *client)
{
 s3c2410_dma_set_buffdone_fn(s->dmach, NULL);
 s3c2410_dma_free(s->dmach, client);
 return 0;
}
static int __init s3c2410iis_probe(struct platform_device *pdev) {
 struct resource *res;
 int size;
        unsigned long flags;
 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 if (res == NULL) {
  printk(KERN_INFO "failed to get memory region resouce\n");
  return -ENOENT;
 }
 
 if (!request_mem_region(res->start, 0x20, pdev->name)) {
   printk(KERN_INFO "failed to get memory region\n");
          return -EBUSY;      
  }
 
 size = (res->end - res->start) + 1;
 iis_base = ioremap(res->start, size);
 if (iis_base == NULL) {
  printk(KERN_INFO "failed to ioremap() region\n");
  return -EINVAL;
 }
 
 iis_clock = clk_get(&pdev->dev, "iis");
 if (iis_clock == NULL) {
  printk(KERN_INFO "failed to find clock source\n");
  return -ENOENT;
 }
 
 clk_enable(iis_clock);
 
 local_irq_save(flags);
 
 /* GPB 4: L3CLOCK, OUTPUT */
 s3c2410_gpio_cfgpin(S3C2410_GPG9, S3C2410_GPG9_OUTP);
 s3c2410_gpio_pullup(S3C2410_GPG9, 1);
 /* GPB 3: L3DATA, OUTPUT */
 s3c2410_gpio_cfgpin(S3C2410_GPG0,S3C2410_GPG0_OUTP);
 s3c2410_gpio_pullup(S3C2410_GPG0, 1);
 /* GPB 2: L3MODE, OUTPUT */
 s3c2410_gpio_cfgpin(S3C2410_GPG8,S3C2410_GPG8_OUTP);
 s3c2410_gpio_pullup(S3C2410_GPG8, 1);

 /* GPE 3: I2SSDI */
 s3c2410_gpio_cfgpin(S3C2410_GPE3,S3C2410_GPE3_I2SSDI);
 s3c2410_gpio_pullup(S3C2410_GPE3, 0);
 /* GPE 0: I2SLRCK */
 s3c2410_gpio_cfgpin(S3C2410_GPE0,S3C2410_GPE0_I2SLRCK);
 s3c2410_gpio_pullup(S3C2410_GPE0, 0);
 /* GPE 1: I2SSCLK */
 s3c2410_gpio_cfgpin(S3C2410_GPE1,S3C2410_GPE1_I2SSCLK);
 s3c2410_gpio_pullup(S3C2410_GPE1, 0);
 /* GPE 2: CDCLK */
 s3c2410_gpio_cfgpin(S3C2410_GPE2,S3C2410_GPE2_CDCLK);
 s3c2410_gpio_pullup(S3C2410_GPE2, 0);
 /* GPE 4: I2SSDO */
 s3c2410_gpio_cfgpin(S3C2410_GPE4,S3C2410_GPE4_I2SSDO);
 s3c2410_gpio_pullup(S3C2410_GPE4, 0);
 
 local_irq_restore(flags);
 
 init_uda1341();
 
 output_stream.dmach = DMA_CH2;
 
 if (audio_init_dma(&output_stream, "UDA1341 out")) {
  audio_clear_dma(&output_stream,&s3c2410iis_dma_out);
  printk( KERN_WARNING AUDIO_NAME_VERBOSE
   ": unable to get DMA channels\n" );
  return -EBUSY;
 }
 
 input_stream.dmach = DMA_CH1;
 
 if (audio_init_dma(&input_stream, "UDA1341 in")) {
  audio_clear_dma(&input_stream,&s3c2410iis_dma_in);
  printk( KERN_WARNING AUDIO_NAME_VERBOSE
   ": unable to get DMA channels\n" );
  return -EBUSY;
 }
 
 audio_dev_dsp = register_sound_dsp(&smdk2410_audio_fops, -1);
 audio_dev_mixer = register_sound_mixer(&smdk2410_mixer_fops, -1);
 
 printk(AUDIO_NAME_VERBOSE " initialized\n");
 
 return 0;
}

static int s3c2410iis_remove(struct platform_device *dev) {
 unregister_sound_dsp(audio_dev_dsp);
 unregister_sound_mixer(audio_dev_mixer);
 audio_clear_dma(&output_stream,&s3c2410iis_dma_out);
 audio_clear_dma(&input_stream,&s3c2410iis_dma_in); /* input */
 printk(AUDIO_NAME_VERBOSE " unloaded\n");
 return 0;
}

static struct platform_driver s3c2410iis_driver = {
  .probe = s3c2410iis_probe,
  .remove = s3c2410iis_remove,
  .driver = {
    .name = "s3c2410-iis",
    .owner = THIS_MODULE,
  },
};
static int __init s3c2410_uda1341_init(void) {
 memzero(&input_stream, sizeof(audio_stream_t));
 memzero(&output_stream, sizeof(audio_stream_t));
 return platform_driver_register(&s3c2410iis_driver);
}
static void __exit s3c2410_uda1341_exit(void) {
 platform_driver_unregister(&s3c2410iis_driver);
}

module_init(s3c2410_uda1341_init);
module_exit(s3c2410_uda1341_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("S3C2410 uda1341 sound driver");
把上面的文件保存到sound/oss中,然后修改sound/oss中的kconfig和makefile,使内核加入该文件,然后编译就可以了。
 
值得注意的地方是,在驱动程序中DMA_CH1和DMA_CH2我是定义成DMACH_I2S_IN和DMACH_I2S_OUT,与其他人的程序中有一定的区别。上面两个量是枚举类型,大家可以查看include/asm-arm/plat-s3c24xx/dma.h文件,里面有它们的定义。
 
就介绍这些吧,有问题大家可以探讨。我的邮箱:yanqiang-liu@163.com
阅读(1381) | 评论(4) | 转发(0) |
给主人留下些什么吧!~~

yqliu292008-09-25 16:33:57

这个忘记了 但是网上下的都差不多 都不能直接用到2.6.24上的

younger02008-09-24 08:42:07

哦,谢谢博主及时回帖 那请问博主的uda1341.c是源码的吗?在哪里下的?

yqliu292008-09-23 18:05:56

不好意思,没有遇到过。

younger02008-09-23 16:08:35

非常感谢博主的共享资源,借助本篇,我已经搞定了uda1341的移植,但是却出现一个新问题,一旦在内核配置中选上uda1341配置后 mmc卡插上后无法识别,不知道博主有没有这方面的问题,难道uda1341和mmc有冲突?