本次移植使用的是linux-2.6.24.4的内核。
首先,在arch/arm/mach-s3c2410/mach-smdk2410.c中添加dm9000a的端口信息,此处作详细说明。
源代码来源于网络,作了部分的修改,先把代码贴上来,有时间再作补充说明。
代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define DM9KS_ID 0x90000A46
#define DM9010_ID 0x90100A46
#define DM9KS_NCR 0x00 /* Network control Reg.*/
#define DM9KS_NSR 0x01 /* Network Status Reg.*/
#define DM9KS_TCR 0x02 /* TX control Reg.*/
#define DM9KS_RXCR 0x05 /* RX control Reg.*/
#define DM9KS_BPTR 0x08
#define DM9KS_EPCR 0x0b
#define DM9KS_EPAR 0x0c
#define DM9KS_EPDRL 0x0d
#define DM9KS_EPDRH 0x0e
#define DM9KS_GPR 0x1f /* General purpose register */
#define DM9KS_TCR2 0x2d
#define DM9KS_SMCR 0x2f /* Special Mode Control Reg.*/
#define DM9KS_ETXCSR 0x30 /* Early Transmit control/status Reg.*/
#define DM9KS_TCCR 0x31 /* Checksum cntrol Reg. */
#define DM9KS_RCSR 0x32 /* Receive Checksum status Reg.*/
#define DM9KS_MRCMDX 0xf0
#define DM9KS_MRCMD 0xf2
#define DM9KS_MDRAL 0xf4
#define DM9KS_MDRAH 0xf5
#define DM9KS_MWCMD 0xf8
#define DM9KS_TXPLL 0xfc
#define DM9KS_TXPLH 0xfd
#define DM9KS_ISR 0xfe
#define DM9KS_IMR 0xff
/*---------------------------------------------*/
#define DM9KS_REG05 0x30 /* SKIP_CRC/SKIP_LONG */
#define DM9KS_REGFF 0xA3 /* IMR */
#define DM9KS_DISINTR 0x80
#define DM9KS_PHY 0x40 /* PHY address 0x01 */
#define DM9KS_PKT_RDY 0x01 /* Packet ready to receive */
#define DM9KS_VID_L 0x28
#define DM9KS_VID_H 0x29
#define DM9KS_PID_L 0x2A
#define DM9KS_PID_H 0x2B
#define DM9KS_RX_INTR 0x01
#define DM9KS_TX_INTR 0x02
#define DM9KS_LINK_INTR 0x20
#define DM9KS_DWORD_MODE 1
#define DM9KS_BYTE_MODE 2
#define DM9KS_WORD_MODE 0
#define TRUE 1
#define FALSE 0
/* Number of continuous Rx packets */
#define CONT_RX_PKT_CNT 10
#define DMFE_TIMER_WUT jiffies+(HZ*5) /* timer wakeup time : 5 second */
#define CARDNAME "dm9ks"
#define MEM_MAPPED_IO 1
#ifdef MEM_MAPPED_IO
#define GETB(a) *((volatile unsigned char *) (a))
#define GETW(a) *((volatile unsigned short *) (a))
#define GETL(a) *((volatile unsigned long *) (a))
#define PUTB(d,a) *((volatile unsigned char *) (a)) = d
#define PUTW(d,a) *((volatile unsigned short *) (a)) = d
#define PUTL(d,a) *((volatile unsigned long *) (a)) = d
#else
#define GETB(a) inb(a)
#define GETW(a) inw(a)
#define GETL(a) inl(a)
#define PUTB(d,a) outb(d,a)
#define PUTW(d,a) outw(d,a)
#define PUTL(d,a) outl(d,a)
#endif
typedef struct _RX_DESC
{
u8 rxbyte;
u8 status;
u16 length;
}RX_DESC;
typedef union{
u8 buf[4];
RX_DESC desc;
} rx_t;
enum DM9KS_PHY_mode {
DM9KS_10MHD = 0,
DM9KS_100MHD = 1,
DM9KS_10MFD = 4,
DM9KS_100MFD = 5,
DM9KS_AUTO = 8,
};
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */
u32 io_addr; /* Register I/O base address */
u32 io_data; /* Data I/O address */
int tx_pkt_cnt;
u8 op_mode; /* PHY operation mode */
u8 io_mode; /* 0:word, 2:byte */
u8 device_wait_reset; /* device state */
u8 Speed; /* current speed */
int cont_rx_pkt_cnt;/* current number of continuos rx packets */
struct timer_list timer;
struct net_device_stats stats;
unsigned char srom[128];
spinlock_t lock;
} board_info_t;
static struct net_device * dmfe_dev = NULL;
/* For module input parameter */
static int mode = DM9KS_100MFD;
static int media_mode = DM9KS_100MFD;
/* function declaration ------------------------------------- */
int dm9k_probe(struct net_device *, unsigned long);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static void dmfe_tx_done(unsigned long);
static void dmfe_packet_receive(struct net_device *);
static int dmfe_stop(struct net_device *);
static struct net_device_stats * dmfe_get_stats(struct net_device *);
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
static irqreturn_t dmfe_interrupt(int , void *);
static void dmfe_timer(unsigned long);
static void dmfe_init_dm9000(struct net_device *);
static unsigned long cal_CRC(unsigned char *, unsigned int, u8);
static u8 ior(board_info_t *, int);
static void iow(board_info_t *, int, u8);
static u16 phy_read(board_info_t *, int);
static void phy_write(board_info_t *, int, u16);
static void dm9000_hash_table(struct net_device *);
static void dmfe_timeout(struct net_device *);
static void dmfe_reset(struct net_device *);
/* DM9000 network baord routine ---------------------------- */
int __init dm9k_probe(struct net_device *dev, unsigned long addr)
{
struct board_info *db; /* Point a board information structure */
u32 id_val;
u16 i, j;
int retval;
/* Search for DM9000 serial NIC */
PUTB(DM9KS_VID_L, addr);
id_val = GETB(addr + 2); /* Change offset to 2 ^^^^^ */
PUTB(DM9KS_VID_H, addr);
id_val |= GETB(addr + 2) << 8;
PUTB(DM9KS_PID_L, addr);
id_val |= GETB(addr + 2) << 16;
PUTB(DM9KS_PID_H, addr);
id_val |= GETB(addr + 2) << 24;
if (id_val != DM9KS_ID && id_val != DM9010_ID) {
/* Dm9k chip not found */
printk("dmfe_probe(): DM9000 not found. ID=%08X\n", id_val);
return -ENODEV;
}
printk(" I/O: %lx, VID: %x \n",addr, id_val);
/* Allocated board information structure */
memset(dev->priv, 0, sizeof(struct board_info));
db = (board_info_t *)dev->priv;
dmfe_dev = dev;
db->io_addr = addr;
db->io_data = addr + 2; /* Change offset to 2 ^^^^^ */
/* driver system function */
dev->base_addr = addr;
dev->irq = IRQ_EINT2;
dev->open = &dmfe_open;
dev->hard_start_xmit = &dmfe_start_xmit;
dev->watchdog_timeo = HZ;
dev->tx_timeout = dmfe_timeout;
dev->stop = &dmfe_stop;
dev->get_stats = &dmfe_get_stats;
dev->set_multicast_list = &dm9000_hash_table;
dev->do_ioctl = &dmfe_do_ioctl;
for(i=0,j=0x10; i<6; i++,j++)
{
db->srom[i] = ior(db, j);
}
/* Set Node Address */
for (i=0; i<6; i++)
dev->dev_addr[i] = db->srom[i];
retval = register_netdev(dev);
if (retval == 0) {
/* now, print out the card info, in a short format.. */
printk("%s: at %#lx IRQ %d\n",
dev->name, dev->base_addr, dev->irq);
if (dev->dma != (unsigned char)-1)
printk(" DMA %d\n", dev->dma);
if (!is_valid_ether_addr(dev->dev_addr)) {
printk("%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", dev->name);
} else {
/* Print the Ethernet address */
printk("%s: Ethernet addr: ", dev->name);
for (i = 0; i < 5; i++)
printk("%2.2x:", dev->dev_addr[i]);
printk("%2.2x\n", dev->dev_addr[5]);
}
}
return 0;
}
/*
Open the interface.
The interface is opened whenever "ifconfig" actives it.
*/
static int dmfe_open(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
u8 reg_nsr;
int i;
if (request_irq(dev->irq,&dmfe_interrupt,0,dev->name,dev))
return -EAGAIN;
/* Grab the IRQ */
set_irq_type(dev->irq, IRQT_RISING);
/* Initilize DM910X board */
dmfe_init_dm9000(dev);
/* Init driver variable */
db->reset_counter = 0;
db->reset_tx_timeout = 0;
db->cont_rx_pkt_cnt = 0;
/* check link state and media speed */
db->Speed =10;
i=0;
do {
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x40) /* link OK!! */
{
/* wait for detected Speed */
mdelay(200);
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x80)
db->Speed =10;
else
db->Speed =100;
break;
}
i++;
mdelay(1);
}while(i<3000); /* wait 3 second */
//printk("i=%d Speed=%d\n",i,db->Speed);
/* set and active a timer process */
init_timer(&db->timer);
db->timer.expires = DMFE_TIMER_WUT * 2;
db->timer.data = (unsigned long)dev;
db->timer.function = &dmfe_timer;
add_timer(&db->timer); //Move to DM9000 initiallization was finished.
netif_start_queue(dev);
return 0;
}
/* Set PHY operationg mode
*/
static void set_PHY_mode(board_info_t *db)
{
u16 phy_reg0 = 0x1200; /* Auto-negotiation & Restart Auto-negotiation */
u16 phy_reg4 = 0x01e1; /* Default flow control disable*/
if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */
{
switch(db->op_mode) {
case DM9KS_10MHD: phy_reg4 = 0x21;
phy_reg0 = 0x1000;
break;
case DM9KS_10MFD: phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9KS_100MHD: phy_reg4 = 0x81;
phy_reg0 = 0x3000;
break;
case DM9KS_100MFD: phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
default:
break;
} // end of switch
} // end of if
phy_write(db, 0, phy_reg0);
phy_write(db, 4, phy_reg4);
}
/*
Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
/* set the internal PHY power-on, GPIOs normal, and wait 2ms */
iow(db, DM9KS_GPR, 1); /* Power-Down PHY */
udelay(500);
iow(db, DM9KS_GPR, 0); /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
udelay(20); /* wait 2ms for PHY power-on ready */
/* do a software reset and wait 20us */
iow(db, DM9KS_NCR, 3);
udelay(20); /* wait 20us at least for software reset ok */
iow(db, DM9KS_NCR, 3); /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
udelay(20); /* wait 20us at least for software reset ok */
/* I/O mode */
db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* Set PHY */
db->op_mode = media_mode;
set_PHY_mode(db);
/* Program operating register */
iow(db, DM9KS_NCR, 0);
iow(db, DM9KS_TCR, 0); /* TX Polling clear */
iow(db, DM9KS_BPTR, 0x3f); /* Less 3kb, 600us */
iow(db, DM9KS_SMCR, 0); /* Special Mode */
iow(db, DM9KS_NSR, 0x2c); /* clear TX status */
iow(db, DM9KS_ISR, 0x0f); /* Clear interrupt status */
/* Added by jackal at 03/29/2004 */
/* Set address filter table */
dm9000_hash_table(dev);
/* Activate DM9000A/DM9010 */
iow(db, DM9KS_RXCR, DM9KS_REG05 | 1); /* RX enable */
iow(db, DM9KS_IMR, DM9KS_REGFF); // Enable TX/RX interrupt mask
/* Init Driver variable */
db->tx_pkt_cnt = 0;
netif_carrier_on(dev);
spin_lock_init(&db->lock);
}
/*
Hardware start transmission.
Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
char * data_ptr;
int i, tmplen;
if(db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) return 1;}
else
{if (db->tx_pkt_cnt >= 2) return 1;}
/* packet counting */
db->tx_pkt_cnt++;
db->stats.tx_packets++;
db->stats.tx_bytes+=skb->len;
if (db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
else
{if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}
/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);
/* Set TX length to reg. 0xfc & 0xfd */
iow(db, DM9KS_TXPLL, (skb->len & 0xff));
iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);
/* Move data to TX SRAM */
data_ptr = (char *)skb->data;
PUTB(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
switch(db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i = 0; i < skb->len; i++)
PUTB((data_ptr[i] & 0xff), db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (skb->len + 1) / 2;
for (i = 0; i < tmplen; i++)
PUTW(((u16 *)data_ptr)[i], db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (skb->len + 3) / 4;
for (i = 0; i< tmplen; i++)
PUTL(((u32 *)data_ptr)[i], db->io_data);
break;
}
#if !defined(ETRANS)
/* Issue TX polling command */
iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif
/* Saved the time stamp */
dev->trans_start = jiffies;
db->cont_rx_pkt_cnt =0;
/* Free this SKB */
dev_kfree_skb(skb);
/* Re-enable interrupt */
iow(db, DM9KS_IMR, DM9KS_REGFF);
return 0;
}
/*
Stop the interface.
The interface is stopped when it is brought.
*/
static int dmfe_stop(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
/* deleted timer */
del_timer(&db->timer);
netif_stop_queue(dev);
/* free interrupt */
free_irq(dev->irq, dev);
/* RESET devie */
phy_write(db, 0x00, 0x8000); /* PHY RESET */
iow(db, DM9KS_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9KS_IMR, DM9KS_DISINTR); /* Disable all interrupt */
iow(db, DM9KS_RXCR, 0x00); /* Disable RX */
/* Dump Statistic counter */
return 0;
}
static void dmfe_tx_done(unsigned long unused)
{
struct net_device *dev = dmfe_dev;
board_info_t *db = (board_info_t *)dev->priv;
int nsr;
nsr = ior(db, DM9KS_NSR);
if(nsr & 0x04) db->tx_pkt_cnt--;
if(nsr & 0x08) db->tx_pkt_cnt--;
if (db->tx_pkt_cnt < 0)
{
printk("[dmfe_tx_done] tx_pkt_cnt ERROR!!\n");
db->tx_pkt_cnt =0;
}
if (db->Speed == 10)
{if(db->tx_pkt_cnt < 1 ) netif_wake_queue(dev);}
else
{if(db->tx_pkt_cnt < 2 ) netif_wake_queue(dev);}
return;
}
/*
DM9000 insterrupt handler
receive the packet to upper layer, free the transmitted packet
*/
static irqreturn_t dmfe_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
board_info_t *db;
int int_status,i;
u8 reg_save;
/* A real interrupt coming */
db = (board_info_t *)dev->priv;
spin_lock(&db->lock);
/* Save previous register address */
reg_save = GETB(db->io_addr);
/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);
/* Got DM9000A/DM9010 interrupt status */
int_status = ior(db, DM9KS_ISR); /* Got ISR */
iow(db, DM9KS_ISR, int_status); /* Clear ISR status */
/* Link status change */
if (int_status & DM9KS_LINK_INTR)
{
netif_stop_queue(dev);
for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */
{
phy_read(db,0x1);
if(phy_read(db,0x1) & 0x4) /*Link OK*/
{
/* wait for detected Speed */
for(i=0; i<200;i++)
udelay(1000);
/* set media speed */
if(phy_read(db,0)&0x2000) db->Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}
netif_wake_queue(dev);
//printk("[INTR]i=%d speed=%d\n",i, (int)(db->Speed));
}
/* Received the coming packet */
if (int_status & DM9KS_RX_INTR)
dmfe_packet_receive(dev);
/* Trnasmit Interrupt check */
if (int_status & DM9KS_TX_INTR)
dmfe_tx_done(0);
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
iow(db, DM9KS_IMR, 0xa2);
}
else
{
/* Re-enable interrupt mask */
iow(db, DM9KS_IMR, DM9KS_REGFF);
}
/* Restore previous register address */
PUTB(reg_save, db->io_addr);
spin_unlock(&db->lock);
return IRQ_HANDLED;
}
/*
Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
return &db->stats;
}
/*
Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
return 0;
}
/* Our watchdog timed out. Called by the networking layer */
static void
dmfe_timeout(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
printk("TX time-out -- dmfe_timeout().\n");
db->reset_tx_timeout++;
db->stats.tx_errors++;
dmfe_reset(dev);
}
static void dmfe_reset(struct net_device * dev)
{
board_info_t *db = (board_info_t *)dev->priv;
u8 reg_save;
int i;
/* Save previous register address */
reg_save = GETB(db->io_addr);
netif_stop_queue(dev);
db->reset_counter++;
dmfe_init_dm9000(dev);
db->Speed =10;
for(i=0; i<1000; i++) /*wait link OK, waiting time=1 second */
{
if(phy_read(db,0x1) & 0x4) /*Link OK*/
{
if(phy_read(db,0)&0x2000) db->Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}
netif_wake_queue(dev);
/* Restore previous register address */
PUTB(reg_save, db->io_addr);
}
/*
A periodic timer routine
*/
static void dmfe_timer(unsigned long data)
{
struct net_device * dev = (struct net_device *)data;
board_info_t *db = (board_info_t *)dev->priv;
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
db->cont_rx_pkt_cnt=0;
iow(db, DM9KS_IMR, DM9KS_REGFF);
}
/* Set timer again */
db->timer.expires = DMFE_TIMER_WUT;
add_timer(&db->timer);
return;
}
#if !defined(CHECKSUM)
#define check_rx_ready(a) ((a) == 0x01)
#else
inline u8 check_rx_ready(u8 rxbyte)
{
if (!(rxbyte & 0x01))
return 0;
return ((rxbyte >> 4) | 0x01);
}
#endif
/*
Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
struct sk_buff *skb;
u8 rxbyte, val;
u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
u32 tmpdata;
rx_t rx;
u16 * ptr = (u16*)℞
u8* rdptr;
do {
/*store the value of Memory Data Read address register*/
MDRAH=ior(db, DM9KS_MDRAH);
MDRAL=ior(db, DM9KS_MDRAL);
ior(db, DM9KS_MRCMDX); /* Dummy read */
rxbyte = GETB(db->io_data); /* Got most updated data */
/* packet ready to receive check */
if(!(val = check_rx_ready(rxbyte))) break;
/* A packet ready now & Get status/length */
GoodPacket = TRUE;
PUTB(DM9KS_MRCMD, db->io_addr);
/* Read packet status & length */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
*ptr = GETB(db->io_data) +
(GETB(db->io_data) << 8);
*(ptr+1) = GETB(db->io_data) +
(GETB(db->io_data) << 8);
break;
case DM9KS_WORD_MODE:
*ptr = GETW(db->io_data);
*(ptr+1) = GETW(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmpdata = GETL(db->io_data);
*ptr = tmpdata;
*(ptr+1) = tmpdata >> 16;
break;
default:
break;
}
/* Packet status check */
if (rx.desc.status & 0xbf)
{
GoodPacket = FALSE;
if (rx.desc.status & 0x01)
{
db->stats.rx_fifo_errors++;
printk("
\n");
}
if (rx.desc.status & 0x02)
{
db->stats.rx_crc_errors++;
printk("\n");
}
if (rx.desc.status & 0x80)
{
db->stats.rx_length_errors++;
printk("\n");
}
if (rx.desc.status & 0x08)
printk("\n");
}
if (!GoodPacket)
{
// drop this packet!!!
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i GETB(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i < tmplen; i++)
GETW(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i < tmplen; i++)
GETL(db->io_data);
break;
}
continue;/*next the packet*/
}
skb = dev_alloc_skb(rx.desc.length+4);
if (skb == NULL )
{
printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);
/*re-load the value into Memory data read address register*/
iow(db,DM9KS_MDRAH,MDRAH);
iow(db,DM9KS_MDRAL,MDRAL);
return;
}
else
{
/* Move data from DM9000 */
skb->dev = dev;
skb_reserve(skb, 2);
rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
/* Read received packet from RX SARM */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i rdptr[i]=GETB(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *)rdptr)[i] = GETW(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i < tmplen; i++)
((u32 *)rdptr)[i] = GETL(db->io_data);
break;
}
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb,dev);
netif_rx(skb);
dev->last_rx=jiffies;
db->stats.rx_packets++;
db->stats.rx_bytes += rx.desc.length;
db->cont_rx_pkt_cnt++;
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
dmfe_tx_done(0);
break;
}
}
}while((rxbyte & 0x01) == DM9KS_PKT_RDY);
}
/*
Set DM9000A/DM9010 multicast address
*/
static void dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
u32 hash_val;
u16 i, oft, hash_table[4];
/* Set Node address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = 0x16; i < 4; i++) {
iow(db, oft++, hash_table[i] & 0xff);
iow(db, oft++, (hash_table[i] >> 8) & 0xff);
}
}
/*
Calculate the CRC valude of the Rx packet
flag = 1 : return the reverse CRC (for the received packet CRC)
0 : return the normal CRC (for Hash Table index)
*/
static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
{
u32 crc = ether_crc_le(Len, Data);
if (flag)
return ~crc;
return crc;
}
/*
Read a byte from I/O port
*/
static u8 ior(board_info_t *db, int reg)
{
PUTB(reg, db->io_addr);
return GETB(db->io_data);
}
/*
Write a byte to I/O port
*/
static void iow(board_info_t *db, int reg, u8 value)
{
PUTB(reg, db->io_addr);
PUTB(value, db->io_data);
}
/*
Read a word from phyxcer
*/
static u16 phy_read(board_info_t *db, int reg)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
iow(db, DM9KS_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
return ( ior(db, DM9KS_EPDRH) << 8 ) | ior(db, DM9KS_EPDRL);
}
/*
Write a word to phyxcer
*/
static void phy_write(board_info_t *db, int reg, u16 value)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9KS_EPDRL, (value & 0xff));
iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));
iow(db, DM9KS_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer write command */
}
/*
* probe the driver
*/
static int dm9k_drv_probe(struct platform_device *pdev)
{
struct net_device *ndev;
unsigned long base;
unsigned int *addr = NULL;
int ret = -ENODEV;
ndev = alloc_etherdev(sizeof(struct board_info));
if (!ndev) {
printk("%s: could not allocate device.\n", CARDNAME);
return -ENOMEM;
}
ndev->dma = (unsigned char)-1;
if (pdev->num_resources < 2 || pdev->num_resources > 3) {
printk("DM9000: Wrong num of resources %d\n", pdev->num_resources);
ret = -ENODEV;
goto out;
}
base = pdev->resource[0].start;
ndev->irq = pdev->resource[1].start;
/*
* Request the regions.
*/
if (!request_mem_region(base, 4, ndev->name)) {
ret = -EBUSY;
goto out;
}
addr = ioremap(base, 4);
if (!addr) {
ret = -ENOMEM;
goto release_mem;
}
ret = dm9k_probe(ndev, (unsigned long)addr);
if (ret != 0) {
iounmap(addr);
release_mem:
release_mem_region(base, 4);
out:
printk("%s: not found (%d).\n", CARDNAME, ret);
kfree(ndev);
}
return ret;
}
static int dm9k_drv_remove(struct platform_device *pdev)
{
return 0;
}
static int dm9k_drv_suspend(struct platform_device *dev, pm_message_t state )
{
return 0;
}
static int dm9k_drv_resume(struct platform_device *dev)
{
return 0;
}
static struct platform_driver dm9k_driver = {
.probe = dm9k_drv_probe,
.remove = dm9k_drv_remove,
.suspend = dm9k_drv_suspend,
.resume = dm9k_drv_resume,
.driver = {
.name = "dm9000",
.owner = THIS_MODULE,
}
};
static void uptech_dm9k_init(void)
{
u32 bwscon;
bwscon = __raw_readl(S3C2410_BWSCON);
bwscon &= ~(S3C2410_BWSCON_WS2|S3C2410_BWSCON_ST2|S3C2410_BWSCON_DW2_32);
bwscon |= (S3C2410_BWSCON_ST2|S3C2410_BWSCON_DW2_16);
__raw_writel(bwscon, S3C2410_BWSCON);
__raw_writel(S3C2410_BANKCON_Tacs4|S3C2410_BANKCON_Tcos4|S3C2410_BANKCON_Tacc14|S3C2410_BANKCON_Tcoh4|S3C2410_BANKCON_Tcah4|S3C2410_BANKCON_Tacp6|S3C2410_BANKCON_PMCnorm, S3C2410_BANKCON2);
set_irq_type(IRQ_EINT2,IRQ_TYPE_LEVEL_HIGH);
s3c2410_gpio_cfgpin(S3C2410_GPF2, S3C2410_GPF2_EINT2);
s3c2410_gpio_pullup(S3C2410_GPF2, 0);
printk(KERN_INFO "Board init for dm9000a finished!\n");
}
/* Description:
when user used insmod to add module, system invoked init_module()
to initilize and register.
*/
int dm9k_init_module(void)
{
printk("*************** DM9000: dm9k_init_module\n");
switch(mode) {
case DM9KS_10MHD:
case DM9KS_100MHD:
case DM9KS_10MFD:
case DM9KS_100MFD:
media_mode = mode;
break;
default:
media_mode = DM9KS_AUTO;
}
uptech_dm9k_init();
return platform_driver_register(&dm9k_driver);
}
/* Description:
when user used rmmod to delete module, system invoked clean_module()
to un-register DEVICE.
*/
void dm9k_cleanup_module(void)
{
struct net_device *dev = dmfe_dev;
unregister_netdev(dmfe_dev);
release_region(dev->base_addr, 2);
free_netdev(dev);
}
MODULE_LICENSE ("GPL");
module_init(dm9k_init_module);
module_exit(dm9k_cleanup_module);