Chinaunix首页 | 论坛 | 博客
  • 博客访问: 218509
  • 博文数量: 53
  • 博客积分: 2626
  • 博客等级: 少校
  • 技术积分: 509
  • 用 户 组: 普通用户
  • 注册时间: 2008-11-27 22:40
文章分类

全部博文(53)

文章存档

2012年(2)

2011年(13)

2010年(10)

2009年(28)

我的朋友

分类:

2009-11-16 20:34:31

SSE技术简介

Intel公司的单指令多数据流式扩展(SSE,Streaming SIMD Extensions)技术能够有效增强CPU浮点运算的能力。Visual Studio .NET 2003提供了对SSE指令集的编程支持,从而允许用户在C++代码中不用编写汇编代码就可直接使用SSE指令的功能。MSDN中有关SSE技术的主题 [1]有可能会使不熟悉使用SSE汇编指令编程的初学者感到困惑,但是在阅读MSDN有关文档的同时,参考一下Intel软件说明书(Intel Software manuals)[2]会使你更清楚地理解使用SSE指令编程的要点。

SIMD(single-instruction, multiple-data)是一种使用单道指令处理多道数据流的CPU执行模式,即在一个CPU指令执行周期内用一道指令完成处理多个数据的操作。考虑一下下面这个任务:计算一个很长的浮点型数组中每一个元素的平方根。实现这个任务的算法可以这样写:

for each   f in array         //对数组中的每一个元素
     f = sqrt(f)              //计算它的平方根

为了了解实现的细节,我们把上面的代码这样写:

for each   f in array
{
     把f从内存加载到浮点寄存器
     计算平方根
     再把计算结果从寄存器中取出放入内存
}

具有Intel SSE指令集支持的处理器有8个128位的寄存器,每一个寄存器可以存放4个(32位)单精度的浮点数。SSE同时提供了一个指令集,其中的指令可以允许 把浮点数加载到这些128位的寄存器之中,这些数就可以在这些寄存器中进行算术逻辑运算,然后把结果放回内存。采用SSE技术后,算法可以写成下面的样 子:

for each   4 members in array   //对数组中的每4个元素
{
     把数组中的这4个数加载到一个128位的SSE寄存器中
     在一个CPU指令执行周期中完成计算这4个数的平方根的操作
     把所得的4个结果取出写入内存
}

C++编程人员在使用SSE指令函数编程时不必关心这些128位的寄存器,你可以使用128位的数据类型“__m128”和一系列C++函数来实现这些算 术和逻辑操作,而决定程序使用哪个SSE寄存器以及代码优化是C++编译器的任务。当需要对很长的浮点数数组中的元素进行处理的时候,SSE技术确实是一 种很高效的方法。


SSE程序设计详细介绍

包含的头文件:

所有的SSE指令函数和__m128数据类型都在xmmintrin.h文件中定义:
#include
因为程序中用到的SSE处理器指令是由编译器决定,所以它并没有相关的.lib库文件。

数据分组(Data Alignment)

由SSE指令处理的每一个浮点数数组必须把其中需要处理的数每16个字节(128位二进制)分为一组。一个静态数组(static array)可由__declspec(align(16))关键字声明:

__declspec(align(16)) float m_fArray[ARRAY_SIZE];

动态数组(dynamic array)可由_aligned_malloc函数为其分配空间:
m_fArray = (float*) _aligned_malloc(ARRAY_SIZE * sizeof(float), 16);

由_aligned_malloc函数分配空间的动态数组可以由_aligned_free函数释放其占用的空间:
_aligned_free(m_fArray);

__m128 数据类型

该数据类型的变量可用做SSE指令的操作数,它们不能被用户指令直接存取。_m128类型的变量被自动分配为16个字节的字长。

CPU对SSE指令集的支持

如果你的CPU能够具有了SSE指令集,你就可以使用Visual Studio .NET 2003提供的对SSE指令集支持的C++函数库了,你可以查看MSDN中的一个Visual C++ CPUID的例子[4],它可以帮你检测你的CPU是否支持SSE、MMX指令集或其它的CPU功能。


编程实例
以下讲解了SSE技术在Visual Studio .NET 2003下的应用实例,你可以在
下载示例程序压缩包。该压缩包中含有两个项目,这两个项目是基于微软基本类库(MFC)建立的Visual C++.NET项目,你也可以按照下面的讲解建立这两个项目。

SSETest 示例项目

SSETest项目是一个基于对话框的应用程序,它用到了三个浮点数组参与运算:

fResult[i] = sqrt( fSource1[i]*fSource1[i] + fSource2[i]*fSource2[i] ) + 0.5

其中i = 0, 1, 2 ... ARRAY_SIZE-1

其中ARRAY_SIZE被定义为30000。数据源数组(Source数组)通过使用sin和cos函数给它赋 值,我们用Kris Jearakul开发的瀑布状图表控件(Waterfall chart control)[3] 来显示参与计算的源数组和结果数组。计算所需的时间(以毫秒ms为单位)在对话框中显示出来。我们使用三种不同的途径来完成计算:

纯C++代码;
使用SSE指令函数的C++代码;
包含SSE汇编指令的代码。


纯C++代码:

void CSSETestDlg::ComputeArrayCPlusPlus(
           float* pArray1,                    // [输入] 源数组1
           float* pArray2,                    // [输入] 源数组2
           float* pResult,                    // [输出] 用来存放结果的数组
           int nSize)                             // [输入] 数组的大小
{

     int i;

     float* pSource1 = pArray1;
     float* pSource2 = pArray2;
     float* pDest = pResult;

     for ( i = 0; i < nSize; i++ )
     {
         *pDest = (float)sqrt((*pSource1) * (*pSource1) + (*pSource2)
                  * (*pSource2)) + 0.5f;

         pSource1++;
         pSource2++;
         pDest++;
     }
}


下面我们用具有SSE特性的C++代码重写上面这个函数。为了查询使用SSE指令C++函数的方法,我参考了Intel软 件说明书(Intel Software manuals)中有关SSE汇编指令的说明,首先我是在第一卷的第九章找到的相关SSE指令,然后在第二卷找到了这些SSE指令的详细说明,这些说明有 一部分涉及了与其特性相关的C++函数。然后我通过这些SSE指令对应的C++函数查找了MSDN中与其相关的说明。搜索的结果见下表:

实现的功能对应的SSE汇编指令Visual C++.NET中的SSE函数
将4个32位浮点数放进一个128位的存储单元。movss 和 shufps_mm_set_ps1
将4对32位浮点数同时进行相乘操作。这4对32位浮点数来自两个128位的存储单元,再把计算结果(乘积)赋给一个128位的存储单元。mulps_mm_mul_ps
将4对32位浮点数同时进行相加操作。这4对32位浮点数来自两个128位的存储单元,再把计算结果(相加之和)赋给一个128位的存储单元。addps_mm_add_ps
对一个128位存储单元中的4个32位浮点数同时进行求平方根操作。sqrtps

_mm_sqrt_ps

使用Visual C++.NET的 SSE指令函数的代码:

void CSSETestDlg::ComputeArrayCPlusPlusSSE(
           float* pArray1,                    // [输入] 源数组1
           float* pArray2,                    // [输入] 源数组2
           float* pResult,                    // [输出] 用来存放结果的数组
           int nSize)                         // [输入] 数组的大小
{
     int nLoop = nSize/ 4;

     __m128 m1, m2, m3, m4;

     __m128* pSrc1 = (__m128*) pArray1;
     __m128* pSrc2 = (__m128*) pArray2;
     __m128* pDest = (__m128*) pResult;


     __m128 m0_5 = _mm_set_ps1(0.5f);         // m0_5[0, 1, 2, 3] = 0.5

     for ( int i = 0; i < nLoop; i++ )
     {
         m1 = _mm_mul_ps(*pSrc1, *pSrc1);         // m1 = *pSrc1 * *pSrc1
         m2 = _mm_mul_ps(*pSrc2, *pSrc2);         // m2 = *pSrc2 * *pSrc2
         m3 = _mm_add_ps(m1, m2);                 // m3 = m1 + m2
         m4 = _mm_sqrt_ps(m3);                    // m4 = sqrt(m3)
         *pDest = _mm_add_ps(m4, m0_5);           // *pDest = m4 + 0.5
        
         pSrc1++;
         pSrc2++;
         pDest++;
     }
}

使用SSE汇编指令实现的C++函数代码:

void CSSETestDlg::ComputeArrayAssemblySSE(
           float* pArray1,                    // [输入] 源数组1
           float* pArray2,                    // [输入] 源数组2
           float* pResult,                    // [输出] 用来存放结果的数组
           int nSize)                         // [输入] 数组的大小
{
     int nLoop = nSize/4;
     float f = 0.5f;

     _asm
     {
         movss    xmm2, f                          // xmm2[0] = 0.5
         shufps   xmm2, xmm2, 0                    // xmm2[1, 2, 3] = xmm2[0]

         mov          esi, pArray1                 // 输入的源数组1的地址送往esi
         mov          edx, pArray2                 // 输入的源数组2的地址送往edx

         mov          edi, pResult                 // 输出结果数组的地址保存在edi
         mov          ecx, nLoop                   //循环次数送往ecx

start_loop:
         movaps       xmm0, [esi]                  // xmm0 = [esi]
         mulps        xmm0, xmm0                   // xmm0 = xmm0 * xmm0

         movaps       xmm1, [edx]                  // xmm1 = [edx]
         mulps        xmm1, xmm1                   // xmm1 = xmm1 * xmm1

         addps        xmm0, xmm1                   // xmm0 = xmm0 + xmm1
         sqrtps       xmm0, xmm0                   // xmm0 = sqrt(xmm0)

         addps        xmm0, xmm2                   // xmm0 = xmm1 + xmm2

         movaps       [edi], xmm0                  // [edi] = xmm0

         add          esi, 16                      // esi += 16
         add          edx, 16                      // edx += 16
         add          edi, 16                      // edi += 16

         dec          ecx                          // ecx--
         jnz          start_loop                 //如果不为0则转向start_loop
     }
}

最后,在我的计算机上运行计算测试的结果:

纯C++代码计算所用的时间是26 毫秒 
使用SSE的C++ 函数计算所用的时间是 9 毫秒 
包含SSE汇编指令的C++代码计算所用的时间是 9 毫秒

以上的时间结果是在Release优化编译后执行程序得出的。

SSESample 示例项目


SSESample项目是一个基于对话框的应用程序,其中它用下面的浮点数数组进行计算:

fResult[i] = sqrt(fSource[i]*2.8)

其中i = 0, 1, 2 ... ARRAY_SIZE-1

这个程序同时计算了数组中的最大值和最小值。ARRAY_SIZE被定义为100000,数组中的计算结果在列表框中显示出来。其中在我的机子上用下面三种方法计算所需的时间是:
纯C++代码计算                    6 毫秒 
使用SSE的C++ 函数计算      3 毫秒 
使用SSE汇编指令计算          2 毫秒

大家看到,使用SSE汇编指令计算的结果会好一些,因为使用了效率增强了的SSX寄存器组。但是在通常情况下,使用SSE的C++ 函数计算会比汇编代码计算的效率更高一些,因为C++编译器的优化后的代码有很高的运算效率,若要使汇编代码比优化后的代码运算效率更高,这通常是很难做 到的。

纯C++代码:

// 输入: m_fInitialArray
// 输出: m_fResultArray, m_fMin, m_fMax
void CSSESampleDlg::OnBnClickedButtonCplusplus()
{
     m_fMin = FLT_MAX;
     m_fMax = FLT_MIN;

     int i;

     for ( i = 0; i < ARRAY_SIZE; i++ )
     {
         m_fResultArray[i] = sqrt(m_fInitialArray[i]   * 2.8f);

         if ( m_fResultArray[i] < m_fMin )
             m_fMin = m_fResultArray[i];

         if ( m_fResultArray[i] > m_fMax )
             m_fMax = m_fResultArray[i];
     }
}

使用Visual C++.NET的 SSE指令函数的代码:


// 输入: m_fInitialArray
// 输出: m_fResultArray, m_fMin, m_fMax
void CSSESampleDlg::OnBnClickedButtonSseC()
{
     __m128 coeff = _mm_set_ps1(2.8f);       // coeff[0, 1, 2, 3] = 2.8
     __m128 tmp;

     __m128 min128 = _mm_set_ps1(FLT_MAX);   // min128[0, 1, 2, 3] = FLT_MAX
     __m128 max128 = _mm_set_ps1(FLT_MIN);   // max128[0, 1, 2, 3] = FLT_MIN

     __m128* pSource = (__m128*) m_fInitialArray;
     __m128* pDest = (__m128*) m_fResultArray;

     for ( int i = 0; i < ARRAY_SIZE/4; i++ )
     {
         tmp = _mm_mul_ps(*pSource, coeff);       // tmp = *pSource * coeff
         *pDest = _mm_sqrt_ps(tmp);               // *pDest = sqrt(tmp)

         min128 =   _mm_min_ps(*pDest, min128);
         max128 =   _mm_max_ps(*pDest, max128);

         pSource++;
         pDest++;
     }

     // 计算max128的最大值和min128的最小值
     union u
     {
         __m128 m;
         float f[4];
     } x;

     x.m = min128;
     m_fMin = min(x.f[0], min(x.f[1], min(x.f[2], x.f[3])));

     x.m = max128;
     m_fMax = max(x.f[0], max(x.f[1], max(x.f[2], x.f[3])));
}

使用SSE汇编指令的C++函数代码:


// 输入: m_fInitialArray
// 输出: m_fResultArray, m_fMin, m_fMax
void CSSESampleDlg::OnBnClickedButtonSseAssembly()
{
   
     float* pIn = m_fInitialArray;
     float* pOut = m_fResultArray;

     float f = 2.8f;
     float flt_min = FLT_MIN;
     float flt_max = FLT_MAX;

     __m128 min128;
     __m128 max128;

     // 使用以下的附加寄存器:xmm2、xmm3、xmm4:
     // xmm2 – 相乘系数
     // xmm3 – 最小值
     // xmm4 – 最大值

     _asm
     {
         movss    xmm2, f                          // xmm2[0] = 2.8
         shufps   xmm2, xmm2, 0                    // xmm2[1, 2, 3] = xmm2[0]

         movss    xmm3, flt_max                    // xmm3 = FLT_MAX
         shufps   xmm3, xmm3, 0                    // xmm3[1, 2, 3] = xmm3[0]

         movss    xmm4, flt_min                    // xmm4 = FLT_MIN
         shufps   xmm4, xmm4, 0                    // xmm3[1, 2, 3] = xmm3[0]

         mov          esi, pIn                     // 输入数组的地址送往esi
         mov          edi, pOut                    // 输出数组的地址送往edi
         mov          ecx, ARRAY_SIZE/4            // 循环计数器初始化

start_loop:
         movaps       xmm1, [esi]                  // xmm1 = [esi]
         mulps        xmm1, xmm2                   // xmm1 = xmm1 * xmm2
         sqrtps       xmm1, xmm1                   // xmm1 = sqrt(xmm1)
         movaps       [edi], xmm1                  // [edi] = xmm1

         minps        xmm3, xmm1
         maxps        xmm4, xmm1

         add          esi, 16
         add          edi, 16

         dec          ecx
         jnz          start_loop


         movaps       min128, xmm3
         movaps       max128, xmm4
     }

     union u
     {
         __m128 m;
         float f[4];
     } x;

     x.m = min128;
     m_fMin = min(x.f[0], min(x.f[1], min(x.f[2], x.f[3])));

     x.m = max128;
     m_fMax = max(x.f[0], max(x.f[1], max(x.f[2], x.f[3])));

}


参考文档:

[1]MSDN, SSE技术主题:

[2]Intel软件说明书(Intel Software manuals):
http://developer.intel.com/design/archives/processors/mmx/index.htm

[3] Kris Jearakul的瀑布状图表控件:

[4] Microsoft Visual C++ CPUID示例:

[5] Matt Pietrek在Microsoft Systems Journal 1998年2月刊上的评论文章:
 。

阅读(1282) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~