Chinaunix首页 | 论坛 | 博客
  • 博客访问: 189747
  • 博文数量: 76
  • 博客积分: 2510
  • 博客等级: 少校
  • 技术积分: 831
  • 用 户 组: 普通用户
  • 注册时间: 2007-12-31 00:52
文章分类

全部博文(76)

文章存档

2010年(58)

2009年(18)

我的朋友

分类:

2009-10-26 13:21:24

Linux USB驱动框架分析(一)

   初次接触与 OS相关的设备驱动编写,感觉还挺有意思的,为了不至于忘掉看过的东西,笔记跟总结当然不可缺,更何况我决定为嵌入式卖命了。好,言归正传,我说一说这段时间的收获,跟大家分享一下 Linux的驱动开发。但这次只先针对 Linux USB子系统作分析,因为周五研讨老板催货。当然,还会顺带提一下其他的驱动程序写法。
       事实上,Linux 的设备驱动都遵循一个惯例—— 表征驱动程序(用driver 更贴切一些,应该称为驱动器比较好吧)的结构体,结构体里面应该包含了驱动程序所需要的所有资源。用术语来说,就是这个驱动器对象所拥有的属性及成员。由于Linux 的内核用c 来编写,所以我们也按照这种结构化的思想来分析代码,但我还是希望从OO 的角度来阐述这些细节。这个结构体的名字有驱动开发人员决定,比如说,鼠标可能有一个叫做mouse_devstruct ,键盘可能由一个keyboard_devstructdev for device ,我们做的只是设备驱动)。而这次我们来分析一下Linux 内核源码中的一个usb-skeleton (就是usb 驱动的骨架咯),自然,他定义的设备结构体就叫做usb-skel
struct usb_skel {
     struct usb_device *      udev;                 /* the usb device for this device */
     struct usb_interface *   interface;            /* the interface for this device */
     struct semaphore       limit_sem;         /* limiting the number of writes in progress */
     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */
     size_t         bulk_in_size;                  /* the size of the receive buffer */
     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */
     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */
     struct kref   kref;
};
       这里我们得补充说明一下一些USB 的协议规范细节。USB 能够自动监测设备,并调用相应得驱动程序处理设备,所以其规范实际上是相当复杂的,幸好,我们不必理会大部分细节问题,因为Linux 已经提供相应的解决方案。就我现在的理解来说,USB 的驱动分为两块,一块是USBbus 驱动,这个东西,Linux 内核已经做好了,我们可以不管,但我们至少要了解他的功能。形象得说,USBbus 驱动相当于铺出一条路来,让所有的信息都可以通过这条USB 通道到达该到的地方,这部分工作由usb_core 来完成。当USB 设备接到USB 控制器接口时,usb_core 就检测该设备的一些信息,例如生产厂商ID 和产品的ID ,或者是设备所属的classsubclassprotocol ,以便确定应该调用哪一个驱动处理该设备。里面复杂细节我们不用管,我们要做的是另一块工作——usb 的设备驱动。也就是说,我们就等着usb_core 告诉我们要工作了,我们才工作。
       从开发人员的角度看,每一个usb 设备有若干个配置(configuration) 组成,每个配置又可以有多个接口(interface) ,每个接口又有多个设置(setting 图中没有给出) ,而接口本身可能没有端点或者多个端点(end point )。USB 的数据交换通过端点来进行,主机与各个端点之间建立起单向的管道来传输数据。而这些接口可以分为四类:
 
控制( control
       用于配置设备、获取设备信息、发送命令或者获取设备的状态报告
中断( interrupt
       USB 宿主要求设备传输数据时,中断端点会以一个固定的速率传送少量数据,还用于发送数据到USB 设备以控制设备,一般不用于传送大量数据。
批量( bulk
       用于大量数据的可靠传输,如果总线上的空间不足以发送整个批量包,它会被分割成多个包传输。
等时( isochronous
       大量数据的不可靠传输,不保证数据的到达,但保证恒定的数据流,多用于数据采集。
       Linux 中用struct usb_host_endpoint 来描述USB 端点,每个usb_host_endpoint 中包含一个struct usb_endpoint_descriptor 结构体,当中包含该端点的信息以及设备自定义的各种信息,这些信息包括:
bEndpointAddress b for byte
       8 位端点地址,其地址还隐藏了端点方向的信息(之前说过,端点是单向的),可以用掩码USB_DIR_OUTUSB_DIR_IN 来确定。
bmAttributes
       端点的类型,结合USB_ENDPOINT_XFERTYPE_MASK 可以确定端点是USB_ENDPOINT_XFER_ISOC (等时)、USB_ENDPOINT_XFER_BULK (批量)还是USB_ENDPOINT_XFER_INT (中断)。
wMaxPacketSize
       端点一次处理的最大字节数。发送的BULK 包可以大于这个数值,但会被分割传送。
bInterval
       如果端点是中断类型,该值是端点的间隔设置,以毫秒为单位。
       在逻辑上,一个USB 设备的功能划分是通过接口来完成的。比如说一个USB 扬声器,可能会包括有两个接口:一个用于键盘控制,另外一个用于音频流传输。而事实上,这种设备需要用到不同的两个驱动程序来操作,一个控制键盘,一个控制音频流。但也有例外,比如蓝牙设备,要求有两个接口,第一用于ACLEVENT 的传输,另外一个用于SCO 链路,但两者通过一个驱动控制。在Linux 上,接口使用struct usb_interface 来描述,以下是该结构体中比较重要的字段:
struct usb_host_interface *altsetting (注意不是usb_interface
       其实据我理解,他应该是每个接口的设置,虽然名字上有点奇怪。该字段是一个设置的数组(一个接口可以有多个设置),每个usb_host_interface 都包含一套由struct usb_host_endpoint 定义的端点配置。但这些配置次序是不定的。
unsigned num_altstting
       可选设置的数量,即altsetting 所指数组的元素个数。
struct usb_host_interface *cur_altsetting
       当前活动的设置,指向altsetting 数组中的一个。
int minor
       当捆绑到该接口的USB 驱动程序使用USB 主设备号时,USB core 分配的次设备号。仅在成功调用usb_register_dev 之后才有效。    
       除了它可以用struct usb_host_config 来描述之外,到现在为止,我对配置的了解不多。而整个USB 设备则可以用struct usb_device 来描述,但基本上只会用它来初始化函数的接口,真正用到的应该是我们之前所提到的自定义的一个结构体。

Linux USB驱动框架分析(二)

    好,了解过 USB一些规范细节之后,我们现在来看看 Linux的驱动框架。事实上, Linux的设备驱动,特别是这种 hotplug USB设备驱动,会被编译成模块,然后在需要时挂在到内核。要写一个 Linux的模块并不复杂,以一个 helloworld为例:
#include
#include
MODULE_LICENSE(“GPL”);
static int hello_init(void)
{
     printk(KERN_ALERT “Hello World!\n”);
     return 0;
}
static int hello_exit(void)
{
     printk(KERN_ALERT “GOODBYE!\n”);
}
module_init(hello_init);
module_exit(hello_exit) ;
    这个简单的程序告诉大家应该怎么写一个模块, MODULE_LICENSE告诉内核该模块的版权信息,很多情况下,用 GPL或者 BSD,或者两个,因为一个私有模块一般很难得到社区的帮助。 module_init module_exit用于向内核注册模块的初始化函数和模块推出函数。如程序所示,初始化函数是 hello_init,而退出函数是 hello_exit
    另外,要编译一个模块通常还需要用到内核源码树中的 makefile,所以模块的 Makefile可以写成:
ifneq ($(KERNELRELEASE),)
obj-m:= hello.o#usb-dongle.o
else
KDIR:= /usr/src/linux-headers-$(shell uname -r)
BDIR:= $(shell pwd)
default:
     $(MAKE) -C $(KDIR) M=$(PWD) modules
.PHONY: clean
clean:
     make -C $(KDIR) M=$(BDIR) clean
endif
    可以用 insmod rmmod来验证模块的挂在跟卸载,但必须用 root的身份登陆命令行,用普通用户加 su或者 sudo Ubuntu上的测试是不行的。

Linux USB驱动框架分析(三)

    下面分析一下 usb-skeleton的源码。这个范例程序可以在 linux-2.6.17/drivers/usb下找到,其他版本的内核程序源码可能有所不同,但相差不大。大家可以先找到源码看一看,先有个整体印象。
    之前已经提到,模块先要向内核注册初始化跟销毁函数:
static int __init usb_skel_init(void)
{
     int result;
     /* register this driver with the USB subsystem */
     result = usb_register(&skel_driver);
     if (result)
         err("usb_register failed. Error number %d", result);
     return result;
}
static void __exit usb_skel_exit(void)
{
     /* deregister this driver with the USB subsystem */
     usb_deregister(&skel_driver);
}
module_init (usb_skel_init);
module_exit (usb_skel_exit);
MODULE_LICENSE("GPL");
    从代码开来,这个 init exit函数的作用只是用来注册驱动程序,这个描述驱动程序的结构体是系统定义的标准结构 struct usb_driver,注册和注销的方法很简单, usb_register struct *usb_driver , usb_deregister struct *usb_driver 。那这个结构体需要做些什么呢?他要向系统提供几个函数入口,跟驱动的名字:
static struct usb_driver skel_driver = {
     .name =      "skeleton",
     .probe =     skel_probe,
     .disconnect = skel_disconnect,
     .id_table =    skel_table,
};
    从代码看来, usb_driver需要初始化四个东西:模块的名字 skeleton probe函数 skel_probe,disconnect函数 skel_disconnect,以及 id_table
    在解释 skel_driver各个成员之前,我们先来看看另外一个结构体。这个结构体的名字有开发人员自定义,它描述的是该驱动拥有的所有资源及状态:
struct usb_skel {
     struct usb_device *      udev;                 /* the usb device for this device */
     struct usb_interface *   interface;            /* the interface for this device */
     struct semaphore       limit_sem;         /* limiting the number of writes in progress */
     unsigned char *         bulk_in_buffer;     /* the buffer to receive data */
     size_t         bulk_in_size;                  /* the size of the receive buffer */
     __u8          bulk_in_endpointAddr;        /* the address of the bulk in endpoint */
     __u8          bulk_out_endpointAddr;      /* the address of the bulk out endpoint */
     struct kref   kref;
};
    我们先来对这个 usb_skel作个简单分析,他拥有一个描述 usb设备的结构体 udev,一个接口 interface,用于并发访问控制的 semaphore(信号量 ) limit_sem,用于接收数据的缓冲 bulk_in_buffer及其尺寸 bulk_in_size,然后是批量输入输出端口地址 bulk_in_endpointAddr bulk_out_endpointAddr,最后是一个内核使用的引用计数器。他们的作用我们将在后面的代码中看到。
    我们再回过头来看看 skel_driver
    n ame 用来告诉内核模块的名字是什么,这个注册之后有系统来使用,跟我们关系不大。
     id_table 用来告诉内核该模块支持的设备。 usb子系统通过设备的 production ID vendor ID的组合或者设备的 class subclass protocol的组合来识别设备,并调用相关的驱动程序作处理。我们可以看看这个 id_table到底是什么东西:
/* Define these values to match your devices */
#define USB_SKEL_VENDOR_ID  0xfff0
#define USB_SKEL_PRODUCT_ID 0xfff0
/* table of devices that work with this driver */
static struct usb_device_id skel_table [] = {
     { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) },
     { }                    /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, skel_table); 
    MODULE_DEVICE_TABLE的第一个参数是设备的类型,如果是 USB设备,那自然是 usb(如果是 PCI设备,那将是 pci,这两个子系统用同一个宏来注册所支持的设备。这涉及 PCI设备的驱动了,在此先不深究)。后面一个参数是设备表,这个设备表的最后一个元素是空的,用于标识结束。代码定义了 USB_SKEL_VENDOR_ID 0xfff0 USB_SKEL_PRODUCT_ID 0xfff0,也就是说,当有一个设备接到集线器时, usb子系统就会检查这个设备的 vendor ID product ID,如果它们的值是 0xfff0时,那么子系统就会调用这个 skeleton模块作为设备的驱动。

Linux USB驱动框架分析(四)

     probe usb子系统自动调用的一个函数,有 USB设备接到硬件集线器时, usb子系统会根据 production ID vendor ID的组合或者设备的 class subclass protocol的组合来识别设备调用相应驱动程序的 probe(探测)函数,对于 skeleton来说,就是 skel_probe。系统会传递给探测函数一个 usb_interface *跟一个 struct usb_device_id *作为参数。他们分别是该 USB设备的接口描述(一般会是该设备的第 0号接口,该接口的默认设置也是第 0号设置)跟它的设备 ID描述(包括 Vendor ID Production ID等)。 probe函数比较长,我们分段来分析这个函数:
dev->udev = usb_get_dev(interface_to_usbdev(interface));
dev->interface = interface;
    在初始化了一些资源之后,可以看到第一个关键的函数调用 ——interface_to_usbdev。他同 uo一个 usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个 usb_device只要用 interface_to_usbdev就够了,但因为要增加对该 usb_device的引用计数,我们应该在做一个 usb_get_dev的操作,来增加引用计数,并在释放设备时用 usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该 usb_device的计数,并不是对本模块的计数,本模块的计数要由 kref来维护。所以, probe一开始就有初始化 kref。事实上, kref_init操作不单只初始化 kref,还将其置设成 1。所以在出错处理代码中有 kref_put,它把 kref的计数减 1,如果 kref计数已经为 0,那么 kref会被释放。 kref_put的第二个参数是一个函数指针,指向一个清理函数。注意,该指针不能为空,或者 kfree。该函数会在最后一个对 kref的引用释放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:
/**
 * kref_put - decrement refcount for object.
 * @kref: object.
 * @release: pointer to the function that will clean up the object when the
 *        last reference to the object is released.
 *        This pointer is required, and it is not acceptable to pass kfree
 *        in as this function.
 *
 * Decrement the refcount, and if 0, call release().
 * Return 1 if the object was removed, otherwise return 0.  Beware, if this
 * function returns 0, you still can not count on the kref from remaining in
 * memory.  Only use the return value if you want to see if the kref is now
 * gone, not present.
 */
int kref_put (struct kref *kref, void (*release)(struct kref *kref))
{
     WARN_ON(release == NULL);
     WARN_ON(release == (void (*)(struct kref *))kfree);
      /*
      * if current count is one, we are the last user and can release object
      * right now, avoiding an atomic operation on 'refcount'
      */
     if ((atomic_read(&kref->refcount) == 1) ||
         (atomic_dec_and_test(&kref->refcount))) {
         release(kref);
         return 1;
     }
     return 0;
}
    当我们执行打开操作时,我们要增加 kref的计数,我们可以用 kref_get,来完成。所有对 struct kref的操作都有内核代码确保其原子性。
    得到了该 usb_device之后,我们要对我们自定义的 usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向 usb_skel注册该 usb设备的端点。这里可能要补充以下一些关于 usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个 usb_host_interface结构里面有一个 usb_interface_descriptor叫做 desc的成员,他应该是用于描述该 interface的一些属性,其中 bNumEndpoints是一个 8位( b for byte)的数字,他代表了该接口的端点数。 probe然后遍历所有的端点,检查他们的类型跟方向,注册到 usb_skel中。
     /* set up the endpoint information */
     /* use only the first bulk-in and bulk-out endpoints */
     iface_desc = interface->cur_altsetting;
     for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
         endpoint = &iface_desc->endpoint[i].desc;
         if ( !dev->bulk_in_endpointAddr &&
                ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK) = = USB_DIR_IN) &&
              ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) = = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk in endpoint */
              buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
              dev->bulk_in_size = buffer_size;
              dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
              dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
              if (!dev->bulk_in_buffer) {
                   err("Could not allocate bulk_in_buffer");
                   goto error;
              }
         }
         if (!dev->bulk_out_endpointAddr &&
            ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)= =USB_DIR_OUT) &&
               ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)= = USB_ENDPOINT_XFER_BULK)) {
              /* we found a bulk out endpoint */
              dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
         }
     }
     if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
         err("Could not find both bulk-in and bulk-out endpoints");
         goto error;
     }

Linux USB驱动框架分析(五)

    接下来的工作是向系统注册一些以后会用的的信息。首先我们来说明一下 usb_set_intfdata(),他向内核注册一个 data,这个 data的结构可以是任意的,这段程序向内核注册了一个 usb_skel结构,就是我们刚刚看到的被初始化的那个,这个 data可以在以后用 usb_get_intfdata来得到。
usb_set_intfdata(interface, dev);
retval = usb_register_dev(interface, &skel_class);
    然后我们向这个 interface注册一个 skel_class结构。这个结构又是什么?我们就来看看这到底是个什么东西:
static struct usb_class_driver skel_class = {
     .name =       "skel%d",
     .fops =       &skel_fops,
     .minor_base = USB_SKEL_MINOR_BASE,
};
    它其实是一个系统定义的结构,里面包含了一名字、一个文件操作结构体还有一个次设备号的基准值。事实上它才是定义 真正完成对设备 IO 操作的函数。 所以他的核心内容应该是 skel_fops。这里补充一些我个人的估计:因为 usb设备可以有多个 interface,每个 interface所定义的 IO操作可能不一样,所以向系统注册的 usb_class_driver要求注册到某一个 interface,而不是 device,因此, usb_register_dev的第一个参数才是 interface,而第二个参数就是某一个 usb_class_driver。通常情况下, linux系统用主设备号来识别某类设备的驱动程序,用次设备号管理识别具体的设备,驱动程序可以依照次设备号来区分不同的设备,所以,这里的次设备好其实是用来管理不同的 interface的,但由于这个范例只有一个 interface,在代码上无法求证这个猜想。
static struct file_operations skel_fops = {
     .owner = THIS_MODULE,
     .read =       skel_read,
     .write =   skel_write,
     .open =       skel_open,
     .release =    skel_release,
};
    这个文件操作结构中定义了对设备的读写、打开、释放( USB设备通常使用这个术语 release)。他们都是函数指针,分别指向 skel_read skel_write skel_open skel_release这四个函数,这四个函数应该有开发人员自己实现。
    当设备被拔出集线器时, usb子系统会自动地调用 disconnect,他做的事情不多,最重要的是注销 class_driver(交还次设备号)和 interface data:
dev = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
/* give back our minor */
usb_deregister_dev(interface, &skel_class);
    然后他会用 kref_put(&dev->kref, skel_delete)进行清理, kref_put的细节参见前文。
    到目前为止,我们已经分析完 usb子系统要求的各个主要操作,下一部分我们在讨论一下对 USB设备的 IO操作。

Linux USB驱动框架分析(六)

    说到 usb子系统的 IO操作,不得不说 usb request block,简称 urb。事实上,可以打一个这样的比喻, usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而 urb就可以看成是汽车。在一开始对 USB规范细节的介绍,我们就说过 USB endpoint 4种不同类型,也就是说能在这条高速公路上流动的数据就有四种。但是这对汽车是没有要求的,所以 urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看 struct urb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下 include/linux/usb.h
    在这里我们重点介绍程序中出现的几个关键字段:
struct usb_device  *dev
     urb所发送的目标设备。
unsigned int pipe
    一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点相对应,我们可以通过以下几个函数来获得管道号并设置管道类型:
     unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个控制 OUT端点。
     unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个控制 IN端点。
     unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个批量 OUT端点。
     unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个批量 OUT端点。
     unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个中断 OUT端点。
     unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个中断 OUT端点。
     unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个等时 OUT端点。
     unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)
           把指定 USB设备的指定端点设置为一个等时 OUT端点。
unsigned int transfer_flags
    当不使用 DMA时,应该 transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。
int status
    当一个 urb把数据送到设备时,这个 urb会由系统返回给驱动程序,并调用驱动程序的 urb完成回调函数处理。这时, status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是 0
    要能够运货当然首先要有车,所以第一步当然要创建 urb
     struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);
    第一个参数是等时包的数量,如果不是乘载等时包,应该为 0,第二个参数与 kmalloc的标志相同。
    要释放一个 urb可以用:
     void usb_free_urb(struct urb *urb);
    要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断 urb,我们用
     void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                    void *transfer_buffer, int buffer_length,
                    usb_complete_t complete, void *context, int interval);
    这里要解释一下, transfer_buffer是一个要送 /收的数据的缓冲, buffer_length是它的长度, complete urb完成回调函数的入口, context由用户定义,可能会在回调函数中使用的数据, interval就是 urb被调度的间隔。
    对于批量 urb和控制 urb,我们用 :
     void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                     void *transfer_buffer, int buffer_length, usb_complete_t complete,
                                     void *context);
     void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
                                     unsigned char* setup_packet,void *transfer_buffer,
                     int buffer_length, usb_complete_t complete,void *context);
    控制包有一个特殊参数 setup_packet,它指向即将被发送到端点的设置数据报的数据。
    对于等时 urb ,系统没有专门的 fill 函数,只能对各 urb 字段显示赋值。
    有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交 urb
     int usb_submit_urb(struct urb *urb, int mem_flags);
     mem_flags有几种: GFP_ATOMIC GFP_NOIO GFP_KERNEL,通常在中断上下文环境我们会用 GFP_ATOMIC
    当我们的卡车运货之后,系统会把它调回来,并调用 urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查 status字段,以确定数据的成功传输与否。下面是用 urb来传送数据的细节。
/* initialize the urb properly */
usb_fill_bulk_urb(urb, dev->udev,
                     usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),
                     buf, writesize, skel_write_bulk_callback, dev);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* send the data out the bulk port */
retval = usb_submit_urb(urb, GFP_KERNEL);
    这里 skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放 urb
dev = (struct usb_skel *)urb->context;
/* sync/async unlink faults aren't errors */
if (urb->status && !(urb->status = = -ENOENT || urb->status == -ECONNRESET || urb->status = = -ESHUTDOWN) ) {
         dbg("%s - nonzero write bulk status received: %d", __FUNCTION__, urb->status);
}
/* free up our allocated buffer */
usb_buffer_free(urb->dev, urb->transfer_buffer_length,
              urb->transfer_buffer, urb->transfer_dma);
    事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用 urb的传输方式,而 usb-skeleton的读操作正是采用这种方式实现:
/* do a blocking bulk read to get data from the device */
retval = usb_bulk_msg(dev->udev,
                            usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),
                            dev->bulk_in_buffer,
                            min(dev->bulk_in_size, count),
                            &bytes_read, 10000);
/* if the read was successful, copy the data to userspace */
if (!retval) {
         if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))
                retval = -EFAULT;
         else
                retval = bytes_read;
}
    程序使用了 usb_bulk_msg来传送数据,它的原型如下:
     int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,
                  int len, int *actual length, int timeout)
    这个函数会阻塞等待数据传输完成或者等到超时, data是输入 /输出缓冲, len是它的大小, actual length是实际传送的数据大小, timeout是阻塞超时。
    对于控制数据,系统提供了另外一个函数,他的原型是:
         Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
                                  __u8 requesttype, __u16 value, __u16 index, void *data,
                                  __u16 size, int timeout);
    r equest是控制消息的 USB请求值、 requesttype是控制消息的 USB请求类型, value是控制消息的 USB消息值, index是控制消息的 USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。
    至此, Linux下的 USB驱动框架分析基本完成了。
阅读(485) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~