Chinaunix首页 | 论坛 | 博客
  • 博客访问: 94058
  • 博文数量: 19
  • 博客积分: 1455
  • 博客等级: 上尉
  • 技术积分: 210
  • 用 户 组: 普通用户
  • 注册时间: 2008-07-04 14:14
文章分类
文章存档

2010年(14)

2008年(5)

我的朋友

分类: LINUX

2008-09-18 13:53:45

http://blog.chinaunix.net/u2/63775/showart_658150.html
U-Boot启动过程
尽管有了调试跟踪手段,甚至也可以通过串口打印信息了,但是不一定能够判断出错原因。如果能够充分理解代码的启动流程,那么对准确地解决和分析问题很有帮助。
开发板上电后,执行U-Boot的第一条指令,然后顺序执行U-Boot启动函数。函数调用顺序如图6.3所示。
看一下board/smsk2410/u-boot.lds这个链接脚本,可以知道目标程序的各部分链接顺序。第一个要链接的是 cpu/arm920t/start.o,那么U-Boot的入口指令一定位于这个程序中。下面详细分析一下程序跳转和函数的调用关系以及函数实现。
1.cpu/arm920t/start.S
这个汇编程序是U-Boot的入口程序,开头就是复位向量的代码。
图6.3  U-Boot启动代码流程图
 
_start: b       reset        //复位向量
       ldr   pc, _undefined_instruction
       ldr   pc, _software_interrupt
       ldr   pc, _prefetch_abort
       ldr   pc, _data_abort
       ldr   pc, _not_used
       ldr   pc, _irq      //中断向量
       ldr   pc, _fiq      //中断向量
 /* the actual reset code  */
reset:          //复位启动子程序
       /* 设置CPU为SVC32模式 */
       mrs   r0,cpsr
       bic   r0,r0,#0x1f
       orr   r0,r0,#0xd3
       msr   cpsr,r0
/* 关闭看门狗 */
 
/* 这些初始化代码在系统重起的时候执行,运行时热复位从RAM中启动不执行 */
#ifdef CONFIG_INIT_CRITICAL
       bl    cpu_init_crit
#endif
 
relocate:                       /* 把U-Boot重新定位到RAM */
       adr   r0, _start          /* r0是代码的当前位置 */
       ldr   r1, _TEXT_BASE      /* 测试判断是从Flash启动,还是RAM */
       cmp     r0, r1          /* 比较r0和r1,调试的时候不要执行重定位 */
       beq     stack_setup    /* 如果r0等于r1,跳过重定位代码 */
       /* 准备重新定位代码 */
       ldr   r2, _armboot_start
       ldr   r3, _bss_start
       sub   r2, r3, r2          /* r2 得到armboot的大小   */
       add   r2, r0, r2          /* r2 得到要复制代码的末尾地址 */
copy_loop: /* 重新定位代码 */
       ldmia r0!, {r3-r10}   /*从源地址[r0]复制 */
       stmia r1!, {r3-r10}   /* 复制到目的地址[r1] */
       cmp   r0, r2          /* 复制数据块直到源数据末尾地址[r2] */
       ble   copy_loop
 
       /* 初始化堆栈等    */
stack_setup:
       ldr   r0, _TEXT_BASE              /* 上面是128 KiB重定位的u-boot */
       sub   r0, r0, #CFG_MALLOC_LEN     /* 向下是内存分配空间 */
       sub   r0, r0, #CFG_GBL_DATA_SIZE /* 然后是bdinfo结构体地址空间  */
#ifdef CONFIG_USE_IRQ
       sub   r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
       sub   sp, r0, #12     /* 为abort-stack预留3个字 */
clear_bss:
       ldr   r0, _bss_start      /* 找到bss段起始地址 */
       ldr   r1, _bss_end        /*  bss段末尾地址   */
       mov   r2, #0x00000000     /* 清零 */
clbss_l:str r2, [r0]        /* bss段地址空间清零循环...  */
       add   r0, r0, #4
       cmp   r0, r1
       bne   clbss_l
       /* 跳转到start_armboot函数入口,_start_armboot字保存函数入口指针 */
       ldr   pc, _start_armboot
_start_armboot: .word start_armboot     //start_armboot函数在lib_arm/board.c中实现
/* 关键的初始化子程序 */
cpu_init_crit:
……  //初始化CACHE,关闭MMU等操作指令
       /* 初始化RAM时钟。
       * 因为内存时钟是依赖开发板硬件的,所以在board的相应目录下可以找到memsetup.S文件。
       */
       mov   ip, lr
       bl    memsetup        //memsetup子程序在board/smdk2410/memsetup.S中实现
       mov   lr, ip
       mov   pc, lr
 
2.lib_arm/board.c
start_armboot是U-Boot执行的第一个C语言函数,完成系统初始化工作,进入主循环,处理用户输入的命令。
 
 
void start_armboot (void)
{
       DECLARE_GLOBAL_DATA_PTR;
       ulong size;
       init_fnc_t **init_fnc_ptr;
       char *s;
       /* Pointer is writable since we allocated a register for it */
       gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
       /* compiler optimization barrier needed for GCC >= 3.4 */
       __asm__ __volatile__("": : :"memory");
       memset ((void*)gd, 0, sizeof (gd_t));
       gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
       memset (gd->bd, 0, sizeof (bd_t));
       monitor_flash_len = _bss_start - _armboot_start;
       /* 顺序执行init_sequence数组中的初始化函数 */
       for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
              if ((*init_fnc_ptr)() != 0) {
                      hang ();
              }
       }
       /*配置可用的Flash */
       size = flash_init ();
       display_flash_config (size);
       /* _armboot_start 在u-boot.lds链接脚本中定义 */
       mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);
       /* 配置环境变量,重新定位 */
       env_relocate ();
       /* 从环境变量中获取IP地址 */
       gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");
       /* 以太网接口MAC 地址 */
       ……
       devices_init ();      /* 获取列表中的设备 */
       jumptable_init ();
       console_init_r ();    /* 完整地初始化控制台设备 */
       enable_interrupts (); /* 使能例外处理 */
       /* 通过环境变量初始化 */
       if ((s = getenv ("loadaddr")) != NULL) {
               load_addr = simple_strtoul (s, NULL, 16);
       }
       /* main_loop()总是试图自动启动,循环不断执行 */
       for (;;) {
               main_loop ();      /* 主循环函数处理执行用户命令 -- common/main.c */
       }
       /* NOTREACHED - no way out of command loop except booting */
}
 
3.init_sequence[]
init_sequence[]数组保存着基本的初始化函数指针。这些函数名称和实现的程序文件在下列注释中。
 
init_fnc_t *init_sequence[] = {
       cpu_init,             /* 基本的处理器相关配置 -- cpu/arm920t/cpu.c */
       board_init,           /* 基本的板级相关配置 -- board/smdk2410/smdk2410.c */
       interrupt_init,       /* 初始化例外处理 -- cpu/arm920t/s3c24x0/interrupt.c */
       env_init,             /* 初始化环境变量 -- common/cmd_flash.c */
       init_baudrate,        /* 初始化波特率设置 -- lib_arm/board.c */
       serial_init,          /* 串口通讯设置 -- cpu/arm920t/s3c24x0/serial.c */
       console_init_f,       /* 控制台初始化阶段1 -- common/console.c */
       display_banner,       /* 打印u-boot信息 -- lib_arm/board.c */
       dram_init,            /* 配置可用的RAM -- board/smdk2410/smdk2410.c */
       display_dram_config,  /* 显示RAM的配置大小 -- lib_arm/board.c */
       NULL,
};
 

U-BOOT start_armboot浅析

start_armboot浅析
ARM920t架构的CPU在完成基本的初始化后(ARM汇编代码),就进入它的C语言代码,而C语言代码的入口就是start_armboot, start_armboot在lib_arm/board.c中。start_armboot将完成以下工作。
1.全局数据结构的初始化
比如gd_t结构的初始化:
251         gd = (gd_t*)(_armboot_start – CFG_MALLOC_LEN – sizeof(gd_t));
_armboot_start是u-boot在RAM中的开始地址(对于u-boot最终搬移到RAM中运行的情况),CFG_MALLOC_LEN在include/configs/.h中定义。
 
bd_t结构的初始化:
272         gd->bd = (bd_t*)((char*)gd-sizeof(bd_t));
u-boot把bd_t结构紧接着gd_t结构存放。
 
内存分配的初始化
316         mem_malloc_init(_armboot_start-CFG_MALLOC_LEN);
经过以上的初始化后,u-boot在内存中的布局为(在底端为低地址)
-----------------------------
BSS
-----------------------------
U-BOOT TEXT/DATA
-----------------------------
CFG_MALLOC_LEN
-----------------------------
gd_t
-----------------------------
bd_t
-----------------------------
STACK
-----------------------------
U-Boot启动分析C语言部分(一)


本文还是以u-boot-1.1.4为例,以make smdk2410_config命令配置源代码之后进行分析。
对于C语言部分代码的调用出现在cpu/arm920t/start.S的第223行:
[code]
        ldr pc, _start_armboot
 
_start_armboot: .word start_armboot
[/code]
这里的start_armboot就是lib_arm/board.c中第207行的start_armboot()函数,由此U-Boot开始执行C语言部分的代码。
start_armboot()函数一开始首先是一个宏调用:
[code]
DECLARE_GLOBAL_DATA_PTR;
[/code]
这个宏的定义在include/asm-arm/global_data.h文件的第64行:
[code]
#define DECLARE_GLOBAL_DATA_PTR     register volatile gd_t *gd asm ("r8")
[/code]
大概的意思是声明一个指向gd_t结构体变量的指针gd,并固定使用寄存器r8来存放该指针。而对gd_t结构体的定义从上面的第36行开始:
[code]
typedef struct global_data {
    bd_t  *bd;
    unsigned long flags;
    unsigned long baudrate;
    unsigned long have_console; /* serial_init() was called */
    unsigned long reloc_off; /* Relocation Offset */
    unsigned long env_addr; /* Address  of Environment struct */
    unsigned long env_valid; /* Checksum of Environment valid? */
    unsigned long fb_base; /* base address of frame buffer */
#ifdef CONFIG_VFD
    unsigned char vfd_type; /* display type */
#endif
#if 0
    unsigned long cpu_clk; /* CPU clock in Hz!  */
    unsigned long bus_clk;
    unsigned long ram_size; /* RAM size */
    unsigned long reset_status; /* reset status register at boot */
#endif
    void  **jt;  /* jump table */
} gd_t;
[/code]
在lib_arm/board.c文件中之所以能够直接使用这个宏和gd_t结构体是因为包含了include/common.h头文件,在common.h的第115行包含了include/asm-arm/global_data.h头文件。
继续来看start_armboot()函数的执行。lib_arm/board.c第229行开始的一个for循环:
[code]
for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
    if ((*init_fnc_ptr)() != 0) {
        hang ();
    }
}
[/code]
这里的init_sequence是定义在上面第190行处的一个指针数组:
[code]
init_fnc_t *init_sequence[] = {
    cpu_init,  /* basic cpu dependent setup */
    board_init,  /* basic board dependent setup */
    interrupt_init,  /* set up exceptions */
    env_init,  /* initialize environment */
    init_baudrate,  /* initialze baudrate settings */
    serial_init,  /* serial communications setup */
    console_init_f,  /* stage 1 init of console */
    display_banner,  /* say that we are here */
    dram_init,  /* configure available RAM banks */
    display_dram_config,
#if defined(CONFIG_VCMA9) || defined (CONFIG_CMC_PU2)
    checkboard,
#endif
    NULL,
};
[/code]
数组类型init_fnc_t则是一个定义在第188行的函数指针类型:
[code]
typedef int (init_fnc_t) (void);
[/code]
由此可知,init_sequence[]数组当中的所有元素都是函数指针了,而这个for循环的作用就是遍历这个数组的所有元素,然后用“(*init_fnc_ptr)()”就依次调用了这些函数来进行初始化的工作

2.调用通用初始化函数
for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
              if ((*init_fnc_ptr)() != 0) {
                     hang ();
              }
       }
init_sequence[]是init_fnc_t函数指针数组,这个数组包含了众多初始化函数,比如cpu_init,board_init等。
 
3.初始化具体设备
这一部分包括对Flash,LCD,网络的初始化等,例如
318 #if (CONFIG_COMMANDS & CFG_CMD_NAND)
       puts ("NAND: ");
       nand_init();            /* go init the NAND */
#endif
 
367 devices_init();
 
386 #ifdef CONFIG_DRIVER_CS8900
       cs8900_get_enetaddr (gd->bd->bi_enetaddr);
#endif


接上回,我们依次来看看init_sequence[]数组当中的各个元素。
 
首先是cpu_init()函数,定义于lib_arm/arm920t/cpu.c第88行。
 
接下来的board_init()函数定义于board/smdk2410/smdk2410.c第68行:

int board_init (void)
{
    DECLARE_GLOBAL_DATA_PTR;
    S3C24X0_CLOCK_POWER * const clk_power = S3C24X0_GetBase_CLOCK_POWER();
    S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();

    /* to reduce PLL lock time, adjust the LOCKTIME register */
    clk_power->LOCKTIME = 0xFFFFFF;

    /* configure MPLL */
    clk_power->MPLLCON = ((M_MDIV << 12) + (M_PDIV << 4) + M_SDIV);

    /* some delay between MPLL and UPLL */
    delay (4000);

    /* configure UPLL */
    clk_power->UPLLCON = ((U_M_MDIV << 12) + (U_M_PDIV << 4) + U_M_SDIV);

    /* some delay between MPLL and UPLL */
    delay (8000);

    /* set up the I/O ports */
    gpio->GPACON = 0x007FFFFF;
    gpio->GPBCON = 0x00044555;
    gpio->GPBUP = 0x000007FF;
    gpio->GPCCON = 0xAAAAAAAA;
    gpio->GPCUP = 0x0000FFFF;
    gpio->GPDCON = 0xAAAAAAAA;
    gpio->GPDUP = 0x0000FFFF;
    gpio->GPECON = 0xAAAAAAAA;
    gpio->GPEUP = 0x0000FFFF;
    gpio->GPFCON = 0x000055AA;
    gpio->GPFUP = 0x000000FF;
    gpio->GPGCON = 0xFF95FFBA;
    gpio->GPGUP = 0x0000FFFF;
    gpio->GPHCON = 0x002AFAAA;
    gpio->GPHUP = 0x000007FF;

    /* arch number of SMDK2410-Board */
    gd->bd->bi_arch_number = MACH_TYPE_SMDK2410;

    /* adress of boot parameters */
    gd->bd->bi_boot_params = 0x30000100;

    icache_enable();
    dcache_enable();

    return 0;
}

interrupt_init()函数定义于cpu/arm920t/s3c24x0/interrupts.c第55行:

int interrupt_init (void)
{
    S3C24X0_TIMERS * const timers = S3C24X0_GetBase_TIMERS();

    /* use PWM Timer 4 because it has no output */
    /* prescaler for Timer 4 is 16 */
    timers->TCFG0 = 0x0f00;
    if (timer_load_val == 0)
    {
        /*
         * for 10 ms clock period @ PCLK with 4 bit divider = 1/2
         * (default) and prescaler = 16. Should be 10390
         * @33.25MHz and 15625 @ 50 MHz
         */

        timer_load_val = get_PCLK()/(2 * 16 * 100);
    }
    /* load value for 10 ms timeout */
    lastdec = timers->TCNTB4 = timer_load_val;
    /* auto load, manual update of Timer 4 */
    timers->TCON = (timers->TCON & ~0x0700000) | 0x600000;
    /* auto load, start Timer 4 */
    timers->TCON = (timers->TCON & ~0x0700000) | 0x500000;
    timestamp = 0;

    return (0);
}


4.初始化环境变量
环境变量在通用初始化函数里面,已经初始化一次(env_init),这里调用env_relocate对环境变量进行重新定位。在我的另一篇文章”U-BOOT ENV 实现”中有对环境变量实现的讨论。
 
5.进入主循环
当然start_armboot除了以上工作外,还完成其它的初始化工作,具体参考lib_arm/board.c,在一切准备就绪之后,就进入u-boot的主循环:
416 for (;;) {
              main_loop ();
       }
main_loop的代码比较长,基本是就是执行用户的输入命令。
 

 
下内容来自笔者在中国Linux论坛Linux嵌入技术讨论区的张贴:x`"m
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  Uw/%#*
--------------------------------------------------------------------------------"
aaronwong: u-boot中代码的疑问(_armboot_start与_start)?12Gm
---------------------------=j
我使用的是u-boot-1.3.0-rc2。在cpu/pxa/start.S中,有如下的标号定义: w'
_TEXT_BASE: 7B
.word TEXT_BASE /*uboot映像在SDRAM中的重定位地址,我设置为0xa170 0000 */ k&BnQf
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  A%
.globl _armboot_start /'b&%
_armboot_start: 50m B8
.word _start /*_start是程序入口,链接完毕它的值应该是0xa170 0000=TEXT_BASE*/ 2inlX
/* 这句话的意思应该是在_armboot_start标号处,保存了_start的值,也就是说,_armboot_start是存放_start的地址,该地址对应的存储单元内容是0xa170 0000*/ ~1
/* ©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  [-S(
* These are defined in the board-specific linker script. 下面的定义与上面应该是一个意思。 y1sDB
*/ ©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  ?Ud=F}
.globl _bss_start W8
_bss_start: 4V1kfj
.word __bss_start 5`
====================== XM
按照上面的理解,__bss_start是uboot 的bss段起始地址,那么uboot映像的大小就是__bss_start - _start;在relocate代码段中计算uboot的大小时,也体现了这一点。 fHK'f0
实际上,_armboot_start并没有实际意义,它只是在"ldr r2, _armboot_start"中用來寻址_start的值而已,_bss_start也是一样的道理,真正有意义的应该是_start和 __bss_start本身。 ;{I
但是,令我不解的是,在C入口函数start_armboot()中(对应文件为lib_arm/board.c),有如下代码: =-yz!
void start_armboot (void) 6#F[C
{ ©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  dCb
......... *=
gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t)); //第一句话 7
.......... xfw,,
monitor_flash_len = _bss_start - _armboot_start; //第二句话 =r1m,
............... =cN^x+
mem_malloc_init (_armboot_start - CFG_MALLOC_LEN); //第三句话 W
.......... ?
} ©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  u
============================================== v#HG/
按 照上面的理解,_armboot_start与_bss_start都是没有实际意义的,它们只是一个地址,有实际意义的是地址中的内容_start和 __bss_start(虽然也还是地址)。象第一句话,其“意图”很明显,是把gd作为全局数据结构体的指针,并初始化为“SDRAM中的uboot起 始地址(即TEXT_BASE)-CFG_MALLOC_LEN-全局数据结构体大小”。
要 实现这个“意图”,应该是写成:gd = (gd_t*)(_start - CFG_MALLOC_LEN - sizeof(gd_t));或者gd = (gd_t*)(TEXT_BASE- CFG_MALLOC_LEN - sizeof(gd_t));才对阿?用_armboot_start来作运算应该是没有任何意义才对!? #0gYd?
第二句话也是一样的道理,它的意图是要计算u-boot映像的大小,应该写成__bss_start - _start才对阿? @`PVq
我使用readelf工具查看编译所得到的uboot映像文件得到信息如下: NK7,G
[aaronwong@localhost build]$ readelf -s u-boot|grep _start G
1018: a1700048 0 NOTYPE GLOBAL DEFAULT 1 _bss_start !Qgo}
1083: a1700044 0 NOTYPE GLOBAL DEFAULT 1 _armboot_start W
1142: a1700000 0 NOTYPE GLOBAL DEFAULT 1 _start b9>
1197: a171b070 0 NOTYPE GLOBAL DEFAULT ABS __bss_start m[
上面我删除了与该讨论无关的包含“_start""t的标号信息。 &:gP
显 然,我前面的理解应该是正确的(_start=TEXT_BASE=0xa170 0000)。那么u-boot源代码中的monitor_flash_len=_bss_start - _armboot_start=0xa1700048 - 0xa1700044 = 4,有什么意义?? p
迷茫中,期盼大虾指点迷津,谢谢~!!! <
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  M6fJvX
--------------------------------------------------------------------------------%:#-
eltshan: [Re: aaronwong]9o22#P
-----------------Zi
1018: a1700048 0 NOTYPE GLOBAL DEFAULT 1 _bss_start D3dY(
1083: a1700044 0 NOTYPE GLOBAL DEFAULT 1 _armboot_start _mAq>
1142: a1700000 0 NOTYPE GLOBAL DEFAULT 1 _start QNr+Pc
1197: a171b070 0 NOTYPE GLOBAL DEFAULT ABS __bss_start +=
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  E-Y>
我想: FCNh{M
_start所在的地址是a1700000, eHEsMt
_armboot_start 所在的地址是a1700044, ?
那么 根据这句: 7.Iy
_armboot_start: .word _start }
所以_armboot_start的值应该是a1700000 w34ok:
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  gh\
所以 ©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  ka
monitor_flash_len = _bss_start - _armboot_start = a171b070 - a1700000 = 1b070 ~=w
而不是你说的 = 4 FYxAA@
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  *E*4z
以上个人意见.Q~St
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  ^p`Sc
--------------------------------------------------------------------------------Nkh
aaronwong: [Re: eltshan];DQlk5
-------------------p4
谢 谢,eltshan!你的理解是正确的,不过我看了之后还是没能想得很明白,因为我在想,按你所说,那么_start的值应该是多少呢?难道是“b reset”这条指令的机器码?所以我对ELF格式的u-boot映像文件作了反汇编,分析之后终于找到了症结所在。以下是部分分析过程,首先是反汇编: 24
arm-iwmmxt-linux-gnueabi-objectdump -D u-boot > u-boot.s *{|(q#
并提取了monitor_flash_len = _bss_start - _armboot_start;这条语句相关的反汇编代码如下: \
============================== ^o#c7
a1700044 <_armboot_start>: b?
a1700044: a1700000 .word 0xa1700000 e{Zn
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  >
a1700048 <_bss_start>: l#"{w
a1700048: a171b070 .word 0xa171b070 U3sK
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  !.
a171b070 : R
a171b070: 00000000 .word 0x00000000 Q^$
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  MeE9
..... m4
a1700f40: e59f41d0 ldr r4, [pc, #464] ; a1701118 lF-4
//r4=[a1701118]=a1700044 2/NL_;
..... EW0Th
a1700f7c: e59f3198 ldr r3, [pc, #408] ; a170111c [T4Uwy
//r3=[a1700044]=a1700048 D
a1700f80: e5942000 ldr r2, [r4] 2/0N0
//r2=[a1700044]=a1700000 mV
a1700f84: e59f4194 ldr r4, [pc, #404] ; a1701120 bWFU
//r4=[a1701120]=a1719d24 #Bnq
a1700f88: e5933000 ldr r3, [r3] *
//r3=[a1700048]=a171b070
a1700f8c: e0623003 rsb r3, r2, r3 $e8I:
//r3= r3-r2 = a171b070-a1700000 = 1b070; q|
a1700f90: e59f218c ldr r2, [pc, #396] ; a1701124 f1XV
//r2=[a1701124]=a171b070 }
a1700f94: e5823000 str r3, [r2] h`lC]
//monitor_flash_len=[r2]=r3=1b070 mJT:HJ
...... =op4
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  9
a1701118: a1700044 .word 0xa1700044 Z0
a170111c: a1700048 .word 0xa1700048 fr3g(
a1701120: a1719d24 .word 0xa1719d24 EpcDe
a1701124: a171b070 .word 0xa171b070 XT&
======================================== :
上面//是我自己的注释。这表明,你的理解的确是正确的。 :}6
经过这个过程之后,我终于认识到自己的误解在哪里了。原来,我是把"汇编语言中LDR伪指令对符号的引用"与"C语言中对汇编程序中符号/常量/变量的引用"搞混淆了。我想说明以下几点:`[I
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  WY
(1) readelf以及u-boot.map和System.map所给出的符号表中符号的值,实际上是表示符号所在的地址,而不是指符号本身的值。 E?F'R
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  u
(2) 汇编语言中没有指针的概念,因此对符号的引用是"赤裸裸"的。例如: M"
========== wM
.globl _armboot_start J%
_armboot_start: .word _start d_
ldr r2, _armboot_start Kf
========== ,
实际上反汇编以后是: 466
============ ;/g-oE
a1700044 <_armboot_start>: }b
a1700044: a1700000 .word 0xa1700000 R
a1700074: e51f2038 ldr r2, [pc, #-56] ; a1700044 <_armboot_start> b b}/4
============ [7A
也就是说,_armboot_start是一个地址0xa1700044,其中的内容是0xa1700000,上面对_armboot_start的引用是直接将其替换为其表示的地址0xa1700044,而非其中的内容0xa1700000。这就是"赤裸裸"的引用。 m
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  )bR;
(3) C语言则不同,对变量/符号/常量的引用必须要通过地址来寻址,不管是全局变量还是局部变量,不同的是局部变量在生命期结束后,所占的地址空间会被释放而 已。即使是函数调用时的参数传递,虽然是将实参的值"拷贝"给形参,但"拷贝"的过程也是通过实参和形参的地址来对两者进行访问的。 p
所 以,在C语言中的 "monitor_flash_len = _bss_start - _armboot_start" 这句话中对_armboot_star的引用,实际上是把它用作了指针,把它作为访问对象的地址来使用,通过这个地址即a1700044 来访问对应存储空间所存放的内容亦即0xa1700000,_bss_start也是同样的道理。所以这句话实际上是monitor_flash_len =[a1700048]-[0xa1700044]=a171b070-a1700000 = 1b070,这样就得到了正确的结果。 eNe#ij
©南开大学嵌入式系统与信息安全实验室学术论坛 -- 我的论坛,我的天地  MnK-47
现 在,我们再回答最前面的问题:_start的值是什么?_start表示地址0xa1700000 ,在汇编语言中,对_start的"绝对引用"(这里是与用相对寻址进行跳转进行区别)就是将其替换为0xa1700000,但其中存放的内容的的确确就 是"b reset"这条指令的机器码,所以如果在C语言中引用_start,得到的结果反而就是这个指令的机器码了。其实这个问题很简单,只是和C语言的引用搅 在一起,一些概念被偷换了而已。 *
 

由汇编部分转入C语言后第一个执行这个文件中的start_armboot ()函数。

部分代码分析如下:

typedef int (init_fnc_t) (void); // 定义函数类型

// 下面为初始化函数定义
init_fnc_t *init_sequence[] = {
 cpu_init, // cp/pxa/cpu.c文件, 执行CPU相关的初始化.
 board_init, // board/psbec270/board.c文件, 执行board相关的初始化.
 interrupt_init, // cp/pxa/interrupt.c文件, 中断初始化, 一般不需要使用中断.
 env_init, // 环境变量初始化
 init_baudrate, /* initialze baudrate settings */
 serial_init, /* serial communications setup */
 console_init_f, /* stage 1 init of console */
 display_banner, /* say that we are here */
 dram_init, /* configure available RAM banks */
 display_dram_config,
#if defined(CONFIG_VCMA9)
 checkboard,
#endif
 NULL,
};

// 在start_armboot()函数中实现如下代码, 用于执行上面定义的初始函数.
for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
  if ((*init_fnc_ptr)() != 0) {
   hang ();
  }
 }

 接下来就是一些系统中用到的环境,变量等初始化,最后进入主循环, 下面是具体分析:
typedef int (init_fnc_t) (void);

init_fnc_t *init_sequence[] = {
 cpu_init, /* basic cpu dependent setup */
 board_init, /* basic board dependent setup */
 interrupt_init, /* set up exceptions */
 env_init, /* initialize environment */
 init_baudrate, /* initialze baudrate settings */
 serial_init, /* serial communications setup */
 console_init_f, /* stage 1 init of console */
 display_banner, /* say that we are here */
 dram_init, /* configure available RAM banks */
 display_dram_config,
 NULL,
};

// 全局数据结构信息
typedef struct global_data {
 bd_t *bd; // 开发板相关参数
 unsigned long flags;
 unsigned long baudrate; // 串行口通讯速率
 unsigned long have_console; // console_init_f()中使用控制台
 unsigned long reloc_off; // Relocation Offset
 unsigned long env_addr; // Address of Environment struct
 unsigned long env_valid; // Checksum of Environment valid?
 unsigned long fb_base; // base address of frame buffer
 void **jt; // jumptable_init()初始化
} gd_t;

// 开发板相关的信息
typedef struct bd_info {
    int bi_baudrate; // serial通讯接口的速率
    unsigned long bi_ip_addr; // 本机IP地址
    unsigned char bi_enetaddr[6]; // MAC地址
    struct environment_s *bi_env; // 环境变量
    ulong bi_arch_number; // 开发板ID
/*
   该变量标识每一种开发板相关的ID号, 对于本系统来说:
gd->bd->bi_arch_number = MACH_TYPE_MAINSTONE;

  该值将传递给内核, 如果这个参数与内核配置的不相同, 那么内核启动解压缩完成后将出现”Error: a”错误, 提示用户这个是体系结构参数传递的不正确. 由于本开发板内核是从Intel的mainstone开发板内核修改而来, 内部的配置都是使用的MAINSTONE开发板的参数, 故这里将ARCH设置为MACH_TYPE_MAINSTONE.
*/
    ulong bi_boot_params; // Uboot传递给linux内核的参数保存地址
/*
 该变量在board/psbec270/psbec270.c中的int board_init(void)中赋值, 这个值的定义是:
gd->bd->bi_boot_params = 0xA0000100;
该变量保存了Uboot传递给linux的参数的地址, 在linux的引导过程中,
head.s文件中没有对传递进来的参数进行处理, 在init/main.c文件中的
start_kernel函数中, 进行解析.
*/
    struct // RAM configuration
    {
  ulong start;
  ulong size;
    } bi_dram[CONFIG_NR_DRAM_BANKS];
     /*
      SDram设置, 可以存在多个bank, 由宏定义
    CONFIG_NR_DRAM_BANKS决定.
      board/psbec270/psbec270.c文件中dram_init()执行RAM初始化
       int dram_init(void)
    gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
    gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
     */
} bd_t;

void start_armboot (void)
{
 DECLARE_GLOBAL_DATA_PTR;
 // #define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r8")
 
 ulong size;
 init_fnc_t **init_fnc_ptr;
 char *s;

 // gd分配内存在空闲区(直接地址引用)
 gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
 /* compiler optimization barrier needed for GCC >= 3.4 */
 __asm__ __volatile__("": : :"memory");
// 给gd分配内存, 这里是在uboot使用的前面, 属于空闲内存.
 memset ((void*)gd, 0, sizeof (gd_t));
// bd分配内存在空闲区, gd的低端(直接地址引用)
 gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
 memset (gd->bd, 0, sizeof (bd_t));

 monitor_flash_len = _bss_start - _armboot_start;// 受监控flash空间大小
 
 // 初始化函数, 见上面定义的函数数组, 其中有几个是开发板相关的.
 for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
  if ((*init_fnc_ptr)() != 0) {
   hang ();
  }
 }

 /* configure available FLASH banks */
 size = flash_init (); // flash初始化
 display_flash_config (size);

 /* armboot_start is defined in the board-specific linker script */
 // malloc使用的内存空间
 mem_malloc_init (_armboot_start - CFG_MALLOC_LEN);

// 如果有nandflash的话就在下面的代码中进行初始化.
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
 puts ("NAND:");
 nand_init(); /* go init the NAND */
#endif
 env_relocate (); // 执行环境初始化
 
 gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr"); // 环境变量中获得本机IP
 
 // 获得Mac地址
 {
  int i;
  ulong reg;
  char *s, *e;
  uchar tmp[64];

  i = getenv_r ("ethaddr", tmp, sizeof (tmp));
  s = (i > 0) ? tmp : NULL;

  for (reg = 0; reg < 6; ++reg) {
   gd->bd->bi_enetaddr[reg] = s ? simple_strtoul (s, &e, 16) : 0;
   if (s)
    s = (*e) ? e + 1 : e;
  }
 }

 devices_init (); // 设备初始化
 jumptable_init (); // 给gd->jt分配内存, 然后加入相关的执行函数
 console_init_r (); // fully init console as a device

 enable_interrupts ();
 /* Initialize from environment */
 if ((s = getenv ("loadaddr")) != NULL) {
  load_addr = simple_strtoul (s, NULL, 16);
 }
 if ((s = getenv ("bootfile")) != NULL) {
  copy_filename (BootFile, s, sizeof (BootFile));
 }

 board_late_init ();

 /* main_loop() can return to retry autoboot, if so just run it again. */
 for (;;) { // 进入主循环后等待命令
  main_loop ();
 }
 /* NOTREACHED - no way out of command loop except booting */
}


阅读(1916) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~