Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2373511
  • 博文数量: 145
  • 博客积分: 8668
  • 博客等级: 中将
  • 技术积分: 3922
  • 用 户 组: 普通用户
  • 注册时间: 2007-03-09 21:21
个人简介

work hard

文章分类

全部博文(145)

文章存档

2016年(1)

2015年(1)

2014年(1)

2013年(12)

2012年(3)

2011年(9)

2010年(34)

2009年(55)

2008年(20)

2007年(9)

分类: LINUX

2010-01-19 14:21:48

     本文核心内容转载来自baidu hi空间的WZT兄分写的文章。文章主要从用户空间系统调用开始分析,直到内核态访问空指针的代码出现。可以说,该文章不仅是udp_sendmsg漏洞分析的文章,也为我们展现了如何udp协议的socket如何从用户态进入内核态执行对应函数的整个过程。
  【警告:本文中列出的代码仅限于学习和研究使用。任何用于非法用途的,请自行承担责任。】

      本文欢迎自由转载,但请标明出处,并保证本文的完整性。
     
作者:Godbach
    Blog:http://Godbach.cublog.cn
     
日期:2010/01/19

【原文】
原文的链接:http://hi.baidu.com/wzt85/blog/item/01c7f79052cd8584a877a4c4.html。

udp_sendmsg空指针漏洞分析    by wzt

漏洞描述:

由于Linux ipv4协议栈中udp_sendmsg()函数设计上存在缺陷, 导致struct rtable *rt以空指针形式传递给ip_append_data(), 从而引发kernel oops,
攻击者可以利用此漏洞提升进程权限。漏洞影响2.6.19以下的版本。

漏洞成因:

>> linux+v2.6.18/net/ipv4/udp.c

int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len)
{
...
// rt被初始化成NULL
struct rtable *rt = NULL;
...
// Linux udp协议允许多个udp数据包合并成一个发送出去,提高发送效率。
// 判断是否有更多的数据需要发送, 攻击者可以构造多个sendto/sendmsg调用, 并且配合MSG_PROXY|MSG_MORE标志, 进而绕过对rt的设置。
if (up->pending) {
/*
* There are pending frames.
* The socket lock must be held while it's corked.
*/
lock_sock(sk);
if (likely(up->pending)) {
if (unlikely(up->pending != AF_INET)) {
release_sock(sk);
return -EINVAL;
}
// 将数据发送出去
goto do_append_data;
}
release_sock(sk);
}

...
// rt直接以NULL传递给ip_append_data, ip_append_data没有判断空指针情况, 从而引发漏洞
do_append_data:
up->len += ulen;
err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen,
sizeof(struct udphdr), &ipc, rt,
corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
...
}

如何触发漏洞:


if((fd=socket(PF_INET,SOCK_DGRAM,0))==-1){
perror("[-] socket()");
return -1;
}
x0x.sa_family=AF_UNSPEC;
memset(x0x.sa_data,0x82,14);
memset((char *)buf,0,sizeof(buf));
sendto(fd,buf,1024,MSG_PROXY | MSG_MORE,&x0x,sizeof(x0x));
sendto(fd,buf,1024,0,&x0x,sizeof(x0x));

socket的中断服务程序是sys_socketcall, 在linux-2.6.18/net/socket.c中:

>> sys_socketcall将会调用sys_socket
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
...
switch(call)
{
case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break;
...

}

>> sys_socket调用sock_create进行初始化, 然后调用sock_map_fd与sockfs文件系统进行挂接。
asmlinkage long sys_socket(int family, int type, int protocol)
{
int retval;
struct socket *sock;

retval = sock_create(family, type, protocol, &sock);
if (retval < 0)
goto out;

retval = sock_map_fd(sock);
if (retval < 0)
goto out_release;

out:
/* It may be already another descriptor 8) Not kernel problem. */
return retval;

out_release:
sock_release(sock);
return retval;
}


>> sock_create
int sock_create(int family, int type, int protocol, struct socket **res)
{
return __sock_create(family, type, protocol, res, 0);
}

>> __sock_create
static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
{
// 分配sock结构并进行填充
if (!(sock = sock_alloc())) {
if (net_ratelimit())
printk(KERN_WARNING "socket: no more sockets\n");
err = -ENFILE;          /* Not exactly a match, but its the closest posix thing */
goto out;
}

...
// 这里进行具体协议的初始化操作, 执行ipv4驱动的create函数, 这个指针是在ipx驱动加载到内核时初始化的
if ((err = net_families[family]->create(sock, protocol)) < 0) {
sock->ops = NULL;
goto out_module_put;
}
...
}

继续跟踪ipv4驱动的初始化过程, /linux-2.6.18/net/ipv4/af_inet.c:
static int __init inet_init(void)
{
// 注册ipv4的struct net_proto_family操作函数
(void)sock_register(&inet_family_ops);
}

>> sock_register
int sock_register(struct net_proto_family *ops)
{
...
net_family_write_lock();
err = -EEXIST;
if (net_families[ops->family] == NULL) {
//将ops指针赋值给net_families[ops->family]
net_families[ops->family]=ops;
err = 0;
}
}

// 从这里可以看出__sock_create中的net_families[family]->create函数是在这里进行初始化的。
static struct net_proto_family inet_family_ops = {
.family = PF_INET,
.create = inet_create,
.owner  = THIS_MODULE,
};


继续跟踪inet_create函数:

static int inet_create(struct socket *sock, int protocol)
{
struct sock *sk;
struct list_head *p;
struct inet_protosw *answer;
struct inet_sock *inet;
struct proto *answer_prot;

...
// 设置sock->ops;
sock->ops = answer->ops;
...
// 设置sk->sk_prot
sk = sk_alloc(PF_INET, GFP_KERNEL, answer_prot, 1);

...
}

onst struct proto_ops inet_dgram_ops = {
.family            = PF_INET,
.owner             = THIS_MODULE,
.release           = inet_release,
.bind              = inet_bind,
.connect           = inet_dgram_connect,
.socketpair        = sock_no_socketpair,
.accept            = sock_no_accept,
.getname           = inet_getname,
.poll              = udp_poll,
.ioctl             = inet_ioctl,
.listen            = sock_no_listen,
.shutdown          = inet_shutdown,
.setsockopt        = sock_common_setsockopt,
.getsockopt        = sock_common_getsockopt,
.sendmsg           = inet_sendmsg,
.recvmsg           = sock_common_recvmsg,
.mmap              = sock_no_mmap,
.sendpage          = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};

static struct inet_protosw inetsw_array[] =
{
{
.type =       SOCK_STREAM,
.protocol =   IPPROTO_TCP,
.prot =       &tcp_prot,
.ops =        &inet_stream_ops,
.capability = -1,
.no_check =   0,
.flags =      INET_PROTOSW_PERMANENT |
INET_PROTOSW_ICSK,
},

{
.type =       SOCK_DGRAM,
.protocol =   IPPROTO_UDP,
.prot =       &udp_prot,
.ops =        &inet_dgram_ops,
.capability = -1,
.no_check =   UDP_CSUM_DEFAULT,
.flags =      INET_PROTOSW_PERMANENT,
},


{
.type =       SOCK_RAW,
.protocol =   IPPROTO_IP,        /* wild card */
.prot =       &raw_prot,
.ops =        &inet_sockraw_ops,
.capability = CAP_NET_RAW,
.no_check =   UDP_CSUM_DEFAULT,
.flags =      INET_PROTOSW_REUSE,
}
};

通过inet_register_protosw函数将以上数据结构关联起来,sys_sendto函数将会用到。

asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
struct sockaddr __user *addr, int addr_len)
{
...
err = sock_sendmsg(sock, &msg, len);
...
}

int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
...
ret = __sock_sendmsg(&iocb, sock, msg, size);
...
}

static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t size)
{
...
// 通过前面的分析可以知道sock->ops->sendmsg函数调用的就是udp_sendmsg(), 此函数存在设计缺陷, 从而引发漏洞。
return sock->ops->sendmsg(iocb, sock, msg, size);
...
}

如何修补:

一、Linux kernel社区已经发出补丁:



diff --git a/net/ipv4/udp.c b/net/ipv4/udp.c
index 6d6142f..865d752 100644 (file)

--- a/net/ipv4/udp.c
+++ b/net/ipv4/udp.c
@@ -675,6 +675,8 @@ do_append_data:
udp_flush_pending_frames(sk);
else if (!corkreq)
err = udp_push_pending_frames(sk, up);
+       else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
+               up->pending = 0;
release_sock(sk);

out:

二、redhat补丁 RHSA-2009:1223 – Security Advisory 

三、 邮件列表给出的另一个补丁, 只能用在最新的内核上, 所以并不是这个漏洞的补丁。


diff -r b3cbf0ceeb34 net/ipv4/ip_output.c
--- a/net/ipv4/ip_output.c      Mon Aug 24 14:48:29 2009 +0200
+++ b/net/ipv4/ip_output.c      Thu Aug 27 15:20:36 2009 +0200
@@ -814,6 +814,8 @@
inet->cork.addr = ipc->addr;
}
rt = *rtp;
+               if (unlikely(!rt))
+                       return -EFAULT;
/*
* We steal reference to this route, caller should not release it
*/
阅读(3681) | 评论(0) | 转发(1) |
给主人留下些什么吧!~~