Chinaunix首页 | 论坛 | 博客
  • 博客访问: 3274889
  • 博文数量: 346
  • 博客积分: 10189
  • 博客等级: 上将
  • 技术积分: 3125
  • 用 户 组: 普通用户
  • 注册时间: 2008-08-05 19:46
文章分类

全部博文(346)

文章存档

2013年(35)

2011年(35)

2010年(76)

2009年(48)

2008年(152)

分类: 大数据

2013-09-13 09:15:28

转自:http://www.cnblogs.com/panfeng412/archive/2012/06/26/storm-common-patterns-of-timecachemap.html
Storm中使用一种叫做TimeCacheMap的数据结构,用于在内存中保存近期活跃的对象,它的实现非常地高效,而且可以自动删除过期不再活跃的对象。

TimeCacheMap使用多个桶buckets来缩小锁的粒度,以此换取高并发读写性能。下面我们来看看内部是如何实现的。

1. 实现原理

桶链表:链表中每个元素是一个HashMap,用于保存key,value格式的数据。

    private LinkedList> _buckets;

锁对象:用于对TimeCacheMap进行get/put等操作时上锁保证原子性。

    private final Object _lock = new Object();

后台清理线程:负责超时后清理数据。

    private Thread _cleaner;

超时回调接口:用于超时后进行函数回调,做一些其他处理。

    public static interface ExpiredCallback { public void expire(K key, V val);
    } private ExpiredCallback _callback;

有了以上数据结构,下面来看看构造函数的具体实现:

1、 首先,初始化指定个数的bucket,以链式链表形式存储,每个bucket中放入空的HashMap;

2、 然后,设置清理线程,处理流程为:

  a)   休眠expirationMillis / (numBuckets-1)毫秒时间(即:expirationSecs / (numBuckets-1)秒);

  b)   对_lock对象上锁,然后从buckets链表中移除最后一个元素;

  c)   向buckets链表头部新加入一个空的HashMap桶,解除_lock对象锁;

  d)   如果设置了callback函数,则进行回调。

复制代码
    public TimeCacheMap(int expirationSecs, int numBuckets, ExpiredCallback callback) { if(numBuckets<2) { throw new IllegalArgumentException("numBuckets must be >= 2");
        }
        _buckets = new LinkedList>(); for(int i=0; i) {
            _buckets.add(new HashMap());
        }


        _callback = callback; final long expirationMillis = expirationSecs * 1000L; final long sleepTime = expirationMillis / (numBuckets-1);
        _cleaner = new Thread(new Runnable() { public void run() { try { while(true) {
                        Map dead = null;
                        Time.sleep(sleepTime); synchronized(_lock) {
                            dead = _buckets.removeLast();
                            _buckets.addFirst(new HashMap());
                        } if(_callback!=null) { for(Entry entry: dead.entrySet()) {
                                _callback.expire(entry.getKey(), entry.getValue());
                            }
                        }
                    }
                } catch (InterruptedException ex) {

                }
            }
        });
        _cleaner.setDaemon(true);
        _cleaner.start();
    }
复制代码

构造函数需要传递三个参数:expirationSecs:超时的时间,单位为秒;numBuckets:桶的个数;callback:超时回调函数。

为了方便使用,还提供了以下三种形式的构造函数,使用时可以根据需要选择:

复制代码
    //this default ensures things expire at most 50% past the expiration time private static final int DEFAULT_NUM_BUCKETS = 3; public TimeCacheMap(int expirationSecs, ExpiredCallback callback) { this(expirationSecs, DEFAULT_NUM_BUCKETS, callback);
    } public TimeCacheMap(int expirationSecs, int numBuckets) { this(expirationSecs, numBuckets, null);
    } public TimeCacheMap(int expirationSecs) { this(expirationSecs, DEFAULT_NUM_BUCKETS);
    }
复制代码

2. 性能分析

get操作:遍历各个bucket,如果存在指定的key则返回,时间复杂度为O(numBuckets)

复制代码
    public V get(K key) { synchronized(_lock) { for(HashMap bucket: _buckets) { if(bucket.containsKey(key)) { return bucket.get(key);
                }
            } return null;
        }
    }
复制代码

put操作:将key,value放到_buckets的第一个桶中,然后遍历其他numBuckets-1个桶,从HashMap中移除其中键为key的记录,时间复杂度为O(numBuckets)

复制代码
    public void put(K key, V value) { synchronized(_lock) {
            Iterator> it = _buckets.iterator();
            HashMap bucket = it.next();
            bucket.put(key, value); while(it.hasNext()) {
                bucket = it.next();
                bucket.remove(key);
            }
        }
    }
复制代码

remove操作:遍历各个bucket,如果存在以key为键的记录,直接删除,时间复杂度为O(numBuckets)

复制代码
    public Object remove(K key) { synchronized(_lock) { for(HashMap bucket: _buckets) { if(bucket.containsKey(key)) { return bucket.remove(key);
                }
            } return null;
        }
    }
复制代码

containsKey操作:遍历各个bucket,如果存在指定的key则返回true,否则返回false,时间复杂度为O(numBuckets)

复制代码
    public boolean containsKey(K key) { synchronized(_lock) { for(HashMap bucket: _buckets) { if(bucket.containsKey(key)) { return true;
                }
            } return false;
        }
    }
复制代码

size操作:遍历各个bucket,累加各个bucket的HashMap的大小,时间复杂度为O (numBuckets)

复制代码
    public int size() { synchronized(_lock) { int size = 0; for(HashMap bucket: _buckets) {
                size+=bucket.size();
            } return size;
        }
    }
复制代码

3. 超时时间

经过上面对put操作和_cleaner线程的分析,我们已经知道:

  a) put操作将数据放到_buckets的第一个桶中,然后遍历其他numBuckets-1个桶,从HashMap中移除其中键为key的记录;

  b) _cleaner线程每隔expirationSecs / (numBuckets-1)秒会把_buckets中最后一个桶中的数据从TimeCacheMap中移除掉。

因此,假设_cleaner线程刚刚清理数据,put函数调用发生将key放入桶中,那么一条数据的超时时间为:

expirationSecs / (numBuckets-1) * numBuckets = expirationSecs * (1 + 1 / (numBuckets-1))

然而,假设put函数调用刚刚执行结束,_cleaner线程就开始清理数据,那么一条数据的超时时间为:

expirationSecs / (numBuckets-1) * numBuckets - expirationSecs / (numBuckets-1) = expirationSecs

4. 总结

1、 TimeCacheMap的高效之处在于锁的粒度小,O(1)时间内完成锁操作,因此,大部分时间内都可以进行get和put操作。

2、 get,put,remove,containsKey和size操作都可以在O(numBuckets)时间内完成,其中numBuckets是桶的个数,默认为3。

3、 未更新数据的超时时间在expirationSecs和expirationSecs * (1 + 1 / (numBuckets-1))之间。

阅读(2777) | 评论(0) | 转发(0) |
0

上一篇:Storm常见模式——BasicBolt

下一篇:没有了

给主人留下些什么吧!~~