import numpy as np
import pandas as pd
ser = pd.Series(np.arange(3.))
data=pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))
print ser
0 0.0
1 1.0
2 2.0
dtype: float64
print data
w x y z
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
import pandas as pd
df = pd.DataFrame([[1,2,3],[4,5,6]])
print df
0 1 2
0 1 2 3
1 4 5 6
没有指定列名和索引。 这时列名就自动为 0,1,2 ;索引自动为数值0,1.
df = pd.DataFrame([[1,2,3],[4,5,6]],index=['row1','row2'],columns=['c1','c2','c3'])
print df
c1 c2 c3
row1 1 2 3
row2 4 5 6
import numpy as np
dates = pd.date_range('20121001',periods=6)
df = pd.DataFrame(np.random.randn(6,4) , index = dates,columns=list('abcd'))
print df
a b c d
2012-10-01 -0.236220 0.586985 0.784953 -0.507129
2012-10-02 -1.020807 -1.316997 -0.747997 1.909333
2012-10-03 0.085208 -0.281736 1.112287 1.572577
2012-10-04 0.008708 -0.925711 -0.615752 -1.183397
2012-10-05 1.158198 -1.393678 0.586624 0.202499
2012-10-06 1.149878 -2.383863 1.646403 1.647935
上面代码创建的dates是个时间索引,
np.random.randn 方法创建一个6行4列的随机数矩阵。
最后的df使用 dates作为索引,使用np.random.randn 方法创建的矩阵作为内容,
使用 list('abcd')作为列名。
3、显示数据
df.head([n]) # 获取df中的前n行数据,n不指定,则默认为5
df.tail([n]) # 获取df中的后n行数据,n不指定,则默认为5
dates = pd.date_range('20121001',periods=100)
df = pd.DataFrame(np.random.randn(100,4) , index = dates,columns=list('abcd' ))
df.head()
a b c d
2012-10-01 -1.010746 0.176277 -0.838870 0.742626
2012-10-02 0.111174 0.182840 0.193215 1.517350
2012-10-03 -0.757385 1.137521 -0.247181 0.659187
2012-10-04 -1.157838 1.464957 -2.106226 1.160796
2012-10-05 0.141747 0.032917 0.647210 -0.861413
[5 rows x 4 columns]
df.tail()
a b c d
2013-01-04 -0.225416 -1.436526 -0.349813 -0.130948
2013-01-05 -1.544653 -0.214760 1.455662 0.050591
2013-01-06 0.582737 -0.646163 -1.763772 -1.463706
2013-01-07 -0.694467 0.710954 -2.227337 -0.257376
2013-01-08 0.282839 -1.100346 1.526374 1.658781
注意,head 和 tail 返回的是一个新的dataframe,与原来的无关
4、按照索引排序
newdf = df.sort_index(ascending=False,inplace=True)
ascending=False 参数指定按照索引值的以降序方式排序,默认是以升序排序。
inplace=True 指定为True时,表示会直接对df中的数据进行排序,函数返回值为None,newdf的值为None;
如果不设置为True(默认为false),则不会对df中数据进行修改,
会返回一个新的df,这时newdf就有内容,是一个新的排序后的df。
5、添加数据(append方法)
append方法可以添加数据到一个dataframe中,注意append方法不会影响原来的dataframe,会返回一个新的dataframe。
语法:
DataFrame.append(otherData, ignore_index=False, verify_integrity=False)
其中otherData参数是要添加的新数据,支持多种格式。
ignore_index 参数默认值为False,如果为True,会对新生成的dataframe使用新的索引(自动产生),忽略原来数据的索引。
verify_integrity参数默认值为False,如果为True,当ignore_index为False时,会检查添加的数据索引是否冲突,如果冲突,则会添加失败。
dates = pd.date_range('20121001',periods=10)
df = pd.DataFrame(np.random.randn(10,4) , index = dates,columns=list('abcd'))
dates1 = pd.date_range('20121001',periods=2)
df1 = pd.DataFrame(np.random.randn(2,4) , index = dates1,columns=list('abcd'))
df.append(df1) # df1中的2行数据会加到df中,且新产生的df的各行的索引就是原来数据的索引
df.append(df1,ignore_index=True) # df1中的2行数据会加到df中,且新产生的df的索引会重新自动建立
df.append(df1,verify_integrity=True) #会报错,因为df1的索引和df2的索引冲突了
说明,df1的列名必须和df一致,否则不是简单的添加行。而是会添加列,再添加行。
df.append({'a':10,'b':11,'c':12,'d':13},ignore_index=True)
a b c d
0 -0.471061 -0.937725 -1.444073 0.640439
1 -0.732039 -1.617755 0.281875 1.179076
2 1.115559 0.136407 -2.225551 0.119433
3 0.695137 0.380088 -0.318689 -0.048248
4 1.483151 -0.124202 -0.722126 0.035601
5 0.326048 -0.139576 -0.172726 0.931670
6 0.858305 0.857661 -0.279078 0.583740
7 -0.041902 0.408085 -1.019313 0.005968
8 0.626730 0.143332 -0.404894 0.377950
9 -1.850168 0.430794 -0.534981 -0.738701
10 10.000000 11.000000 12.000000 13.000000
上面代码是新产生的df会添加一行。这种操作,
ignore_index参数值必须设置为True,否则会报错。
df.append({'e':10},ignore_index=True)
a b c d e
0 -0.471061 -0.937725 -1.444073 0.640439 NaN
1 -0.732039 -1.617755 0.281875 1.179076 NaN
2 1.115559 0.136407 -2.225551 0.119433 NaN
3 0.695137 0.380088 -0.318689 -0.048248 NaN
4 1.483151 -0.124202 -0.722126 0.035601 NaN
5 0.326048 -0.139576 -0.172726 0.931670 NaN
6 0.858305 0.857661 -0.279078 0.583740 NaN
7 -0.041902 0.408085 -1.019313 0.005968 NaN
8 0.626730 0.143332 -0.404894 0.377950 NaN
9 -1.850168 0.430794 -0.534981 -0.738701 NaN
10 NaN NaN NaN NaN 10
可以看出,
如果插入的数据,指定的列名不存在,新产生的df不仅会增加行,还会增加列。
6、遍历数据
for index,row in df.iterrows():
print index #获取行的索引
print row.a #根据列名获取字段
print row[0]#根据列的序号(从0开始)获取字段
7、查找数据
dates = pd.date_range('20121001',periods=10)
df = pd.DataFrame(np.random.randn(10,4) , index = dates,columns=list('abcd'))
可以有各种方式获取df中的全部或部分数据
df['a'] #按照列名获取指定的列,返回的是一个Series,其中key是索引,value是该列对应的字段值
df[:2] #获取前2行数据,效果等同 df[0:2],返回的是一个新的dataframe
df[2:5] #获取第3行~5行 这3条记录,返回的是一个新的dataframe
df.loc['20121009'] #获取指定索引的行,等同于 df.loc['2012-10-09'],返回的是一个Series,其中key是列名,value是该列对应的字段值
df.iloc[3] #获取指定序号的行,这里是第4行
8、删除数据
del df['a'] #删除dataframe中指定的列,这个是直接影响当前的dataframe,注意 del不是函数,是python中的内置语句,没有返回值
df.drop(['a'],axis=1) #删除指定的列,与上面的区别是不会影响原来的dataframe,dop方法会返回一个删除了指定列的新的dataframe
说明,dop方法既可以删除列,也可以删除行,但上面创建的df无法被删除行(?),下面这个例子可以删除行
data = pd.DataFrame(np.arange(16).reshape((4, 4)),index=['Ohio', 'Colorado', 'Utah', 'New York'],columns=['one', 'two', 'three', 'four'])
data.drop(['Colorado', 'Ohio'])
上面代码中的dop方法删除了指定索引的两行,注意同删除列一样,drop方法不会影响原来的dataframe,会返回一个删除后的新的dataframe
9、增加列
dates = pd.date_range('20121001',periods=10)
df = pd.DataFrame(np.random.randn(10,3) , index = dates,columns=list('abc'))
df['d'] = pd.Series(np.random.randn(10),index=df.index)
上面代码先是创建了一个dataframe,然后通过df['d'] 插入了一个新的列。如果指定的列名存在,会修改列的内容。
10、修改指定行或单元格数据
df.values[i][j]= xxx #其中i是行号,j是列号,都是从0开始
df.values[1]=12 # 会把一行中的所有列中的数据设置为同一个值,这里的参数1是序号,这里为第2行数据
df['a'] = 12 #这样会把指定列的所有数据都设置为同一个值,如这里的12。
注意,如果指定的列名不存在,会新增列
11、插入行
前面介绍的append方法是产生一个新的 dataframe,不会改变原来的dataframe。
那有没有办法直接在当前的frame中插入一行数据呢? 上面介绍的 df[列名] = xxx 是用来插入或修改列的信息。
pd.DataFrame()
参数:
1、二维array;
2、Series 列表;
3、value为Series的字典;
a.1、二维array
import pandas as pd
import numpy as np
s1=np.array([1,2,3,4])
s2=np.array([5,6,7,8])
df=pd.DataFrame([s1,s2])
print df
dataFrame二维数组create
a.2、Series列表(效果与二维array相同)
import pandas as pd
import numpy as np
s1=pd.Series(np.array([1,2,3,4]))
s2=pd.Series(np.array([5,6,7,8]))
df=pd.DataFrame([s1,s2])
print df
a.3、value为Series的字典结构;
import pandas as pd
import numpy as np
s1=pd.Series(np.array([1,2,3,4]))
s2=pd.Series(np.array([5,6,7,8]))
df=pd.DataFrame({"a":s1,"b":s2});
print df
value为Series的字典结构
注:若创建使用的参数中,array、Series长度不一样时,对应index的value值若不存在则为NaN
b.属性
b.1 .columns :每个columns对应的keys
b.2 .shape:形状,(a,b),index长度为a,columns数为b
b.3 .index;.values:返回index列表;返回value二维array
b.4 .head();.tail();
c.if-then 操作
c.1使用.ix[]
df=pd.DataFrame({"A":[1,2,3,4],"B":[5,6,7,8],"C":[1,1,1,1]})
df.ix[df.A>1,'B']= -1
print df
df.ix[条件,then操作区域]
df=pd.DataFrame({"A":[1,2,3,4],"B":[5,6,7,8],"C":[1,1,1,1]})
df["then"]=np.where(df.A<3,1,0)
print df
np.where(条件,then,else)
d.根据条件选择取DataFrame
d.1 直接取值df.[]
df=pd.DataFrame({"A":[1,2,3,4],"B":[5,6,7,8],"C":[1,1,1,1]})
df=df[df.A>=2]
print df
d.2 使用.loc[]
df=pd.DataFrame({"A":[1,2,3,4],"B":[5,6,7,8],"C":[1,1,1,1]})
df=df.loc[df.A>2]
print df
e.1groupby 形成group
df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
'size': list('SSMMMLL'),
'weight': [8, 10, 11, 1, 20, 12, 12],
'adult' : [False] * 5 + [True] * 2});
#列出动物中weight最大的对应size
group=df.groupby("animal").apply(lambda subf: subf['size'][subf['weight'].idxmax()])
print group
grouping
e.2 使用get_group 取出其中一分组
df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
'size': list('SSMMMLL'),
'weight': [8, 10, 11, 1, 20, 12, 12],
'adult' : [False] * 5 + [True] * 2});
group=df.groupby("animal")
cat=group.get_group("cat")
print cat
data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型
data.w #选择表格中的'w'列,使用点属性,返回的是Series类型
data[['w']] #选择表格中的'w'列,返回的是DataFrame类型
data[['w','z']] #选择表格中的'w'、'z'列
data[0:2] #返回第1行到第2行的所有行,前闭后开,包括前不包括后
data[1:2] #返回第2行,从0计,返回的是单行,通过有前后值的索引形式,
#如果采用data[1]则报错
data.ix[1:2] #返回第2行的第三种方法,返回的是DataFrame,跟data[1:2]同
data['a':'b'] #利用index值进行切片,返回的是**前闭后闭**的DataFrame,
#即末端是包含的
data.irow(0) #取data的第一行
data.icol(0) #取data的第一列
data.head() #返回data的前几行数据,默认为前五行,需要前十行则data.head(10)
data.tail() #返回data的后几行数据,默认为后五行,需要后十行则data.tail(10)
ser.iget_value(0) #选取ser序列中的第一个
ser.iget_value(-1) #选取ser序列中的最后一个,这种轴索引包含索引器的series不能采用ser[-1]去获取最后一个,这会引起歧义。
data.iloc[-1] #选取DataFrame最后一行,返回的是Series
data.iloc[-1:] #选取DataFrame最后一行,返回的是DataFrame
data.loc['a',['w','x']] #返回‘a’行'w'、'x'列,这种用于选取行索引列索引已知
data.iat[1,1] #选取第二行第二列,用于已知行、列位置的选取。
在pandas中创建一个空DataFrame的方法,类似于创建了一个空字典(dict)。
例如:empty = pandas.DataFrame({"name":"","age":"","sex":""})?
想要向empty中插入一行数据,可以用同样的方法?。
(1)首先,要创建一个DataFrame。要注意,在这里需加入index属性,
new = pandas.DataFrame({"name":"","age":"","sex":""},index=["0"])。
(2)然后,开始插值。ignore_index=True,可以帮助忽略index,自动递增。
empty.append(new,ignore_index=True)
(3)最重要的,赋值给empty.
empty = empty.append(new,ignore_index=True)
否则,数据始终没有写入。
1.查看DataFrame前xx行或后xx行
a=DataFrame(data);
a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。
a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。
2.查看DataFrame的index,columns以及values
a.index ; a.columns ; a.values 即可
3.describe()函数对于数据的快速统计汇总
a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。
4.对数据的转置
a.T
5.对轴进行排序
a.sort_index(axis=1,ascending=False);
其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。
后面的ascending=False表示按降序排列,参数缺失时默认升序。
6.对DataFrame中的值排序
a.sort(columns='x')
即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。
二、选择对象
1.选择特定列和行的数据
a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。
取行数据,通过切片[]来选择
如:
a[0:3] 则会返回前三行的数据。
2.loc是通过标签来选择数据
a.loc['one']则会默认表示选取行为'one'的行;
a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;
a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;
a.loc['one','a']与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。
3.iloc则是直接通过位置来选择数据
这与通过标签选择类似
a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)
a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;
a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。
4.使用条件来选择
使用单独的列来选择数据
a[a.c>0] 表示选择c列中大于0的数据
使用where来选择数据
a[a>0] 表直接选择a中所有大于0的数据
使用isin()选出特定列中包含特定值的行
a1=a.copy()
a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。
三、设置值(赋值)
赋值操作在上述选择操作的基础上直接赋值即可。
例
a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9
a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9
同时也依然可以用条件来直接赋值
a[a>0]=-a 表示将a中所有大于0的数转化为负值
四、缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。
1.reindex()方法
用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。
a.reindex(index=list(a.index)+['five'],columns=list(a.columns)+['d'])
a.reindex(index=['one','five'],columns=list(a.columns)+['d'])
即用index=[]表示对index进行操作,columns表对列进行操作。
2.对缺失值进行填充
a.fillna(value=x)
表示用值为x的数来对缺失值进行填充
3.去掉包含缺失值的行
a.dropna(how='any')
表示去掉所有包含缺失值的行
五、合并
1.contact
contact(a1,axis=0/1,keys=['xx','xx','xx',...]),
其中a1表示要进行连接的列表数据,
axis=1时表横着对数据进行连接。
axis=0或不指定时,表将数据竖着进行连接。
a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。
例:a1=[b['a'],b['c']]
result=pd.concat(a1,axis=1,keys=['1','2'])
2.Append 将一行或多行数据连接到一个DataFrame上
a.append(a[2:],ignore_index=True)
表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,
若ignore_index=Ture则会对所有的行重新自动建立索引。
3.merge类似于SQL中的join
设a1,a2为两个dataframe,二者中存在相同的键值,两个对象连接的方式有下面几种:
(1)内连接,pd.merge(a1, a2, on='key')
(2)左连接,pd.merge(a1, a2, on='key', how='left')
(3)右连接,pd.merge(a1, a2, on='key', how='right')
(4)外连接, pd.merge(a1, a2, on='key', how='outer')
至于四者的具体差别,具体学习参考sql中相应的语法。
六、分组(groupby)
用pd.date_range函数生成连续指定天数的的日期
pd.date_range('20000101',periods=10)
八、相关操作
描述性统计:
1.
a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;
2.
统计某一列x中各个值出现的次数:a['x'].value_counts();
3.对数据应用函数
a.apply(lambda x:x.max()-x.min()) 表示返回所有列中最大值-最小值的差。
4.字符串相关操作
a['gender1'].str.lower() 将gender1中所有的英文大写转化为小写,注意dataframe没有str属性,只有series有,所以要选取a中的gender1字段。
九、时间序列
在六中用pd.date_range('xxxx',periods=xx,freq='D/M/Y....')函数生成连续指定天数的的日期列表。
例如pd.date_range('20000101',periods=10),其中periods表示持续频数;
pd.date_range('20000201','20000210',freq='D')也可以不指定频数,只指定起始日期。
import pandas as pd
import re
import math
dframe1 = pd.read_excel("window regulator分析报告数据对比源.xlsx", sheetname="Sheet1") #读取数据
dframe2 = pd.read_excel("window regulator分析报告数据对比源.xlsx", sheetname="Sheet2")#
dframe1["sku"] ="#" #添加一列数据,初始化为#
df = pd.DataFrame(columns = ["ebayno", "p_sku", "sale", "sku"]) #创建一个空的dataframe
# print(df)
sku = dframe2.sku.values
p_skus = dframe2.p_sku.values
# print(p_skus)
i = 0
for ps in p_skus :
dframe1.loc[dframe1.p_sku == ps,"sku"] = sku[i]
# print(dframe1.loc[dframe1.p_sku == ps])
df = df.append(dframe1.loc[dframe1.p_sku == ps], ignore_index=True) #忽略索引,往dataframe中插入一行数据
# print(df)
i = i + 1
# print(dframe1)
# print(sku.values) #将series变成数组
print(df)
df = df[["sku","ebayno","sale"]] #选取指定的列
df.to_csv("std.csv",encoding="gbk",index=False ) #写入到csv时,不要将索引写入index = False