自强不息,厚德载物。
分类: NOSQL
2016-02-17 18:27:59
一:背景
在做客户CRM的时候有这样一个场景:在某个公司中, 某人获取自己可以查看的销售机会列表,并按照修改时间排序, 其转化为mongodb的查询为:
db.sc_info.find({did:90865,status:1, scid:{$in:[155,153,156]}}).sort({modify_time:-1})
其中did为公司ID,status等于1表示该销售机会可以展示给任何有权限的人查看, scid表示销售机会ID, modify_tine表示最后修改时间。对于数据少量是完全没有问题, 但是如果数据量是千万级别呢?其查询根本就没法完成, 请看下面的优化过程:
二: Mongodb执行计划分析器explain
本人使用的是Moongdb3.0版本,Mongodb3.0版本的explain返回结果和以前的版本有很大的不同,介于Mongodb3.0的许多优秀特色,将3.0版本的返回分成了3个不同层面:
queryPlanner:查询计划的选择器,首先进行查询分析,最终选择一个winningPlan,是explain返回的默认层面。
executionStats:为执行统计层面,返回winningPlan的统计结果
allPlansExecution:为返回所有执行计划的统计,包括rejectedPlan
所以:我们在查询优化的时候,只需要关注queryPlanner, executionStats即可,因为queryPlanner为我们选择出了winningPlan, 而executionStats为我们统计了winningPlan的所有关键数据。
2.1 queryPlanner返回结果的意义
{
"queryPlanner" : {
"plannerVersion" : ,
"namespace" : ,
"indexFilterSet" : ,
"parsedQuery" : {
...
},
"winningPlan" : {
"stage" : ,
...
"inputStage" : {
"stage" : ,
...
"inputStage" : {
...
}
}
},
"rejectedPlans" : [
,
...
]
}
explain.queryPlanner: queryPlanner的返回
explain.queryPlanner.namespace:该值返回的是该query所查询的表
explain.queryPlanner.indexFilterSet:针对该query是否有indexfilter
explain.queryPlanner.winningPlan:查询优化器针对该query所返回的最优执行计划的详细内容。
explain.queryPlanner.winningPlan.stage:最优执行计划的stage,这里返回是FETCH,可以理解为通过返回的index位置去检索具体的文档(stage有数个模式,将在后文中进行详解)。
Explain.queryPlanner.winningPlan.inputStage:用来描述子stage,并且为其父stage提供文档和索引关键字。
explain.queryPlanner.winningPlan.stage的child stage,此处是IXSCAN,表示进行的是index scanning。
explain.queryPlanner.winningPlan.keyPattern:所扫描的index内容,此处是did:1,status:1,modify_time: -1与scid : 1
explain.queryPlanner.winningPlan.indexName:winning plan所选用的index。
explain.queryPlanner.winningPlan.isMultiKey是否是Multikey,此处返回是false,如果索引建立在array上,此处将是true。
explain.queryPlanner.winningPlan.direction:此query的查询顺序,此处是forward,如果用了.sort({modify_time:-1})将显示backward。
explain.queryPlanner.winningPlan.indexBounds:winningplan所扫描的索引范围,如果没有制定范围就是[MaxKey, MinKey],这主要是直接定位到mongodb的chunck中去查找数据,加快数据读取。
explain.queryPlanner.rejectedPlans:其他执行计划(非最优而被查询优化器reject的)的详细返回,其中具体信息与winningPlan的返回中意义相同,故不在此赘述。
2.2 executionStats返回结构的意义
"executionStats" : {
"executionSuccess" : ,
"nReturned" : ,
"executionTimeMillis" : ,
"totalKeysExamined" : ,
"totalDocsExamined" : ,
"executionStages" : {
"stage" :
"nReturned" : ,
"executionTimeMillisEstimate" : ,
"works" : ,
"advanced" : ,
"needTime" : ,
"needYield" : ,
"isEOF" : ,
...
"inputStage" : {
"stage" : ,
...
"nReturned" : 0,
"executionTimeMillisEstimate" : ,
...
"inputStage" : {
...
}
}
},
executionStats.executionSuccess:是否执行成功
executionStats.nReturned:满足查询条件的文档个数,即查询的返回条数
executionStats.executionTimeMillis:整体执行时间
executionStats.totalKeysExamined:索引整体扫描的文档个数,和早起版本的nscanned 是一样的
executionStats.totalDocsExamined:document扫描个数, 和早期版本中的nscannedObjects 是一样的
executionStats.executionStages:整个winningPlan执行树的详细信息,一个executionStages包含一个或者多个inputStages
executionStats.executionStages.stage:这里是FETCH去扫描对于documents,后面会专门用来解释大部分查询使用到的各种stage的意思
executionStats.executionStages.nReturned:由于是FETCH,所以这里该值与executionStats.nReturned一致
executionStats.executionStages.docsExamined:与executionStats.totalDocsExamined一致executionStats.inputStage中的与上述理解方式相同
explain.executionStats.executionStages.works:被查询执行阶段所操作的“工作单元(work units)”数。
explain.executionStats.executionStages.advanced:优先返回给父stage的中间结果集中文档个数
explain.executionStats.executionStages.isEOF:查询执行是否已经到了数据流的末尾
这些值的初始值都是0。Works的 值当isEOF为1时要比nReturned大1, isEOF为0是相同。
2.3 stage的类型的意义
mongodb的文档中列出了前4种类型,还有一些没有列出来,但是会比较常见,这里一并解释一下。
COLLSCAN :全表扫描
IXSCAN:索引扫描
FETCH::根据索引去检索指定document
SHARD_MERGE:各个分片返回数据进行merge
SORT:表明在内存中进行了排序(与前期版本的scanAndOrder:true一致)
SORT_MERGE:表明在内存中进行了排序后再合并
LIMIT:使用limit限制返回数
SKIP:使用skip进行跳过
IDHACK:针对_id进行查询
SHARDING_FILTER:通过mongos对分片数据进行查询
COUNT:利用db.coll.count()之类进行count运算
COUNTSCAN:count不使用用Index进行count时的stage返回
COUNT_SCAN:count使用了Index进行count时的stage返回
SUBPLA:未使用到索引的$or查询的stage返回
TEXT:使用全文索引进行查询时候的stage返回
附:explain查询结果解析官方文档: