此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现。页面释放的函数入口是__free_page(),其实则是一个宏定义。
具体实现:
-
【file:/include/linux/gfp.h】
-
#define __free_page(page) __free_pages((page), 0)
而__free_pages()的实现:
-
【file:/mm/page_alloc.c】
-
void __free_pages(struct page *page, unsigned int order)
-
{
-
if (put_page_testzero(page)) {
-
if (order == 0)
-
free_hot_cold_page(page, 0);
-
else
-
__free_pages_ok(page, order);
-
}
-
}
其中put_page_testzero()是对page结构的_count引用计数做原子减及测试,用于检查内存页面是否仍被使用,如果不再使用,则进行释放。其中order表示页面数量,如果释放的是单页,则会调用free_hot_cold_page()将页面释放至per-cpu page缓存中,而不是伙伴管理算法;真正的释放至伙伴管理算法的是__free_pages_ok(),同时也是用于多个页面释放的情况。
此处接着则由free_hot_cold_page()开始分析:
-
【file:/mm/page_alloc.c】
-
/*
-
* Free a 0-order page
-
* cold == 1 ? free a cold page : free a hot page
-
*/
-
void free_hot_cold_page(struct page *page, int cold)
-
{
-
struct zone *zone = page_zone(page);
-
struct per_cpu_pages *pcp;
-
unsigned long flags;
-
int migratetype;
-
-
if (!free_pages_prepare(page, 0))
-
return;
-
-
migratetype = get_pageblock_migratetype(page);
-
set_freepage_migratetype(page, migratetype);
-
local_irq_save(flags);
-
__count_vm_event(PGFREE);
-
-
/*
-
* We only track unmovable, reclaimable and movable on pcp lists.
-
* Free ISOLATE pages back to the allocator because they are being
-
* offlined but treat RESERVE as movable pages so we can get those
-
* areas back if necessary. Otherwise, we may have to free
-
* excessively into the page allocator
-
*/
-
if (migratetype >= MIGRATE_PCPTYPES) {
-
if (unlikely(is_migrate_isolate(migratetype))) {
-
free_one_page(zone, page, 0, migratetype);
-
goto out;
-
}
-
migratetype = MIGRATE_MOVABLE;
-
}
-
-
pcp = &this_cpu_ptr(zone->pageset)->pcp;
-
if (cold)
-
list_add_tail(&page->lru, &pcp->lists[migratetype]);
-
else
-
list_add(&page->lru, &pcp->lists[migratetype]);
-
pcp->count++;
-
if (pcp->count >= pcp->high) {
-
unsigned long batch = ACCESS_ONCE(pcp->batch);
-
free_pcppages_bulk(zone, batch, pcp);
-
pcp->count -= batch;
-
}
-
-
out:
-
local_irq_restore(flags);
-
}
先看一下free_pages_prepare()的实现:
-
【file:/mm/page_alloc.c】
-
static bool free_pages_prepare(struct page *page, unsigned int order)
-
{
-
int i;
-
int bad = 0;
-
-
trace_mm_page_free(page, order);
-
kmemcheck_free_shadow(page, order);
-
-
if (PageAnon(page))
-
page->mapping = NULL;
-
for (i = 0; i < (1 << order); i++)
-
bad += free_pages_check(page + i);
-
if (bad)
-
return false;
-
-
if (!PageHighMem(page)) {
-
debug_check_no_locks_freed(page_address(page),
-
PAGE_SIZE << order);
-
debug_check_no_obj_freed(page_address(page),
-
PAGE_SIZE << order);
-
}
-
arch_free_page(page, order);
-
kernel_map_pages(page, 1 << order, 0);
-
-
return true;
-
}
其中trace_mm_page_free()用于trace追踪机制;而kmemcheck_free_shadow()用于内存检测工具kmemcheck,如果未定义CONFIG_KMEMCHECK的情况下,它是一个空函数。接着后面的PageAnon()等都是用于检查页面状态的情况,以判断页面是否允许释放,避免错误释放页面。由此可知该函数主要作用是检查和调试。
接着回到free_hot_cold_page()函数中,get_pageblock_migratetype()和set_freepage_migratetype()分别是获取和设置页面的迁移类型,即设置到page->index;local_irq_save()和末尾的local_irq_restore()则用于保存恢复中断请求标识。
if (migratetype >= MIGRATE_PCPTYPES) {
if
(unlikely(is_migrate_isolate(migratetype))) {
free_one_page(zone, page, 0,
migratetype);
goto out;
}
migratetype = MIGRATE_MOVABLE;
}
这里面的MIGRATE_PCPTYPES用来表示每CPU页框高速缓存的数据结构中的链表的迁移类型数目,如果某个页面类型大于MIGRATE_PCPTYPES则表示其可挂到可移动列表中,如果迁移类型是MIGRATE_ISOLATE则直接将该其释放到伙伴管理算法中。
末尾部分:
pcp =
&this_cpu_ptr(zone->pageset)->pcp;
if (cold)
list_add_tail(&page->lru,
&pcp->lists[migratetype]);
else
list_add(&page->lru,
&pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
unsigned long batch =
ACCESS_ONCE(pcp->batch);
free_pcppages_bulk(zone, batch, pcp);
pcp->count -= batch;
}
其中pcp表示内存管理区的每CPU管理结构,cold表示冷热页面,如果是冷页就将其挂接到对应迁移类型的链表尾,而若是热页则挂接到对应迁移类型的链表头。其中if (pcp->count >= pcp->high)判断值得注意,其用于如果释放的页面超过了每CPU缓存的最大页面数时,则将其批量释放至伙伴管理算法中,其中批量数为pcp->batch。
具体分析一下释放至伙伴管理算法的实现free_pcppages_bulk():
-
【file:/mm/page_alloc.c】
-
/*
-
* Frees a number of pages from the PCP lists
-
* Assumes all pages on list are in same zone, and of same order.
-
* count is the number of pages to free.
-
*
-
* If the zone was previously in an "all pages pinned" state then look to
-
* see if this freeing clears that state.
-
*
-
* And clear the zone's pages_scanned counter, to hold off the "all pages are
-
* pinned" detection logic.
-
*/
-
static void free_pcppages_bulk(struct zone *zone, int count,
-
struct per_cpu_pages *pcp)
-
{
-
int migratetype = 0;
-
int batch_free = 0;
-
int to_free = count;
-
-
spin_lock(&zone->lock);
-
zone->pages_scanned = 0;
-
-
while (to_free) {
-
struct page *page;
-
struct list_head *list;
-
-
/*
-
* Remove pages from lists in a round-robin fashion. A
-
* batch_free count is maintained that is incremented when an
-
* empty list is encountered. This is so more pages are freed
-
* off fuller lists instead of spinning excessively around empty
-
* lists
-
*/
-
do {
-
batch_free++;
-
if (++migratetype == MIGRATE_PCPTYPES)
-
migratetype = 0;
-
list = &pcp->lists[migratetype];
-
} while (list_empty(list));
-
-
/* This is the only non-empty list. Free them all. */
-
if (batch_free == MIGRATE_PCPTYPES)
-
batch_free = to_free;
-
-
do {
-
int mt; /* migratetype of the to-be-freed page */
-
-
page = list_entry(list->prev, struct page, lru);
-
/* must delete as __free_one_page list manipulates */
-
list_del(&page->lru);
-
mt = get_freepage_migratetype(page);
-
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
-
__free_one_page(page, zone, 0, mt);
-
trace_mm_page_pcpu_drain(page, 0, mt);
-
if (likely(!is_migrate_isolate_page(page))) {
-
__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
-
if (is_migrate_cma(mt))
-
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
-
}
-
} while (--to_free && --batch_free && !list_empty(list));
-
}
-
spin_unlock(&zone->lock);
-
}
里面while大循环用于计数释放指定批量数的页面。其中释放方式是先自MIGRATE_UNMOVABLE迁移类型起(止于MIGRATE_PCPTYPES迁移类型),遍历各个链表统计其链表中页面数:
do {
batch_free++;
if (++migratetype ==
MIGRATE_PCPTYPES)
migratetype = 0;
list =
&pcp->lists[migratetype];
} while (list_empty(list));
如果只有MIGRATE_PCPTYPES迁移类型的链表为非空链表,则全部页面将从该链表中释放。
后面的do{}while()里面,其先将页面从lru链表中去除,然后获取页面的迁移类型,通过__free_one_page()释放页面,最后使用__mod_zone_page_state()修改管理区的状态值。
着重分析一下__free_one_page()的实现:
-
【file:/mm/page_alloc.c】
-
/*
-
* Freeing function for a buddy system allocator.
-
*
-
* The concept of a buddy system is to maintain direct-mapped table
-
* (containing bit values) for memory blocks of various "orders".
-
* The bottom level table contains the map for the smallest allocatable
-
* units of memory (here, pages), and each level above it describes
-
* pairs of units from the levels below, hence, "buddies".
-
* At a high level, all that happens here is marking the table entry
-
* at the bottom level available, and propagating the changes upward
-
* as necessary, plus some accounting needed to play nicely with other
-
* parts of the VM system.
-
* At each level, we keep a list of pages, which are heads of continuous
-
* free pages of length of (1 << order) and marked with _mapcount
-
* PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
-
* field.
-
* So when we are allocating or freeing one, we can derive the state of the
-
* other. That is, if we allocate a small block, and both were
-
* free, the remainder of the region must be split into blocks.
-
* If a block is freed, and its buddy is also free, then this
-
* triggers coalescing into a block of larger size.
-
*
-
* -- nyc
-
*/
-
-
static inline void __free_one_page(struct page *page,
-
struct zone *zone, unsigned int order,
-
int migratetype)
-
{
-
unsigned long page_idx;
-
unsigned long combined_idx;
-
unsigned long uninitialized_var(buddy_idx);
-
struct page *buddy;
-
-
VM_BUG_ON(!zone_is_initialized(zone));
-
-
if (unlikely(PageCompound(page)))
-
if (unlikely(destroy_compound_page(page, order)))
-
return;
-
-
VM_BUG_ON(migratetype == -1);
-
-
page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
-
-
VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
-
VM_BUG_ON_PAGE(bad_range(zone, page), page);
-
-
while (order < MAX_ORDER-1) {
-
buddy_idx = __find_buddy_index(page_idx, order);
-
buddy = page + (buddy_idx - page_idx);
-
if (!page_is_buddy(page, buddy, order))
-
break;
-
/*
-
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
-
* merge with it and move up one order.
-
*/
-
if (page_is_guard(buddy)) {
-
clear_page_guard_flag(buddy);
-
set_page_private(page, 0);
-
__mod_zone_freepage_state(zone, 1 << order,
-
migratetype);
-
} else {
-
list_del(&buddy->lru);
-
zone->free_area[order].nr_free--;
-
rmv_page_order(buddy);
-
}
-
combined_idx = buddy_idx & page_idx;
-
page = page + (combined_idx - page_idx);
-
page_idx = combined_idx;
-
order++;
-
}
-
set_page_order(page, order);
-
-
/*
-
* If this is not the largest possible page, check if the buddy
-
* of the next-highest order is free. If it is, it's possible
-
* that pages are being freed that will coalesce soon. In case,
-
* that is happening, add the free page to the tail of the list
-
* so it's less likely to be used soon and more likely to be merged
-
* as a higher order page
-
*/
-
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
-
struct page *higher_page, *higher_buddy;
-
combined_idx = buddy_idx & page_idx;
-
higher_page = page + (combined_idx - page_idx);
-
buddy_idx = __find_buddy_index(combined_idx, order + 1);
-
higher_buddy = higher_page + (buddy_idx - combined_idx);
-
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
-
list_add_tail(&page->lru,
-
&zone->free_area[order].free_list[migratetype]);
-
goto out;
-
}
-
}
-
-
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
-
out:
-
zone->free_area[order].nr_free++;
-
}
于while (order < MAX_ORDER-1)前面主要是对释放的页面进行检查校验操作。而while循环内,通过__find_buddy_index()获取与当前释放的页面处于同一阶的伙伴页面索引值,同时藉此索引值计算出伙伴页面地址,并做伙伴页面检查以确定其是否可以合并,若否则退出;接着if (page_is_guard(buddy))用于对页面的debug_flags成员做检查,由于未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;则剩下的操作主要就是将页面从分配链中摘除,同时将页面合并并将其处于的阶提升一级。
退出while循环后,通过set_page_order()设置页面最终可合并成为的管理阶。最后判断当前合并的页面是否为最大阶,否则将页面放至伙伴管理链表的末尾,避免其过早被分配,得以机会进一步与高阶页面进行合并。末了,将最后的挂入的阶的空闲计数加1。
至此伙伴管理算法的页面释放完毕。
而__free_pages_ok()的页面释放实现调用栈则是:
__free_pages_ok()
—>free_one_page()
—>__free_one_page()
殊途同归,最终还是__free_one_page()来释放,具体的过程就不再仔细分析了。
【篇外小记】
trace_mm_page_free()具体实现位置:
-
【file:/include/trace/event/kmem.h】
-
TRACE_EVENT(mm_page_free,
-
-
TP_PROTO(struct page *page, unsigned int order),
-
-
TP_ARGS(page, order),
-
-
TP_STRUCT__entry(
-
__field( struct page *, page )
-
__field( unsigned int, order )
-
),
-
-
TP_fast_assign(
-
__entry->page = page;
-
__entry->order = order;
-
),
-
-
TP_printk("page=%p pfn=%lu order=%d",
-
__entry->page,
-
page_to_pfn(__entry->page),
-
__entry->order)
-
);
其TRACE_EVENT()是一个宏,具体实现:
-
【file:/include/linux/tracepoint.h】
-
#define TRACE_EVENT(name, proto, args, struct, assign, print) \
-
DECLARE_TRACE(name, PARAMS(proto), PARAMS(args))
继而查找DECLARE_TRACE()宏定义:
-
【file:/include/linux/tracepoint.h】
-
#define DECLARE_TRACE(name, proto, args) \
-
__DECLARE_TRACE(name, PARAMS(proto), PARAMS(args), 1, \
-
PARAMS(void *__data, proto), \
-
PARAMS(__data, args))
最后由__DECLARE_TRACE()宏展开:
-
【file:/include/linux/tracepoint.h】
-
#define __DECLARE_TRACE(name, proto, args, cond, data_proto, data_args) \
-
extern struct tracepoint __tracepoint_##name; \
-
static inline void trace_##name(proto) \
-
{ \
-
if (static_key_false(&__tracepoint_##name.key)) \
-
__DO_TRACE(&__tracepoint_##name, \
-
TP_PROTO(data_proto), \
-
TP_ARGS(data_args), \
-
TP_CONDITION(cond),,); \
-
} \
-
__DECLARE_TRACE_RCU(name, PARAMS(proto), PARAMS(args), \
-
PARAMS(cond), PARAMS(data_proto), PARAMS(data_args)) \
-
static inline int \
-
register_trace_##name(void (*probe)(data_proto), void *data) \
-
{ \
-
return tracepoint_probe_register(#name, (void *)probe, \
-
data); \
-
} \
-
static inline int \
-
unregister_trace_##name(void (*probe)(data_proto), void *data) \
-
{ \
-
return tracepoint_probe_unregister(#name, (void *)probe, \
-
data); \
-
} \
-
static inline void \
-
check_trace_callback_type_##name(void (*cb)(data_proto)) \
-
{ \
-
}
在C语言中,宏里面的双井号“##”被称为连接符,是一种预处理运算符,用于把两个语言符号连接组合成单个语言符号。于是乎,trace和name串起来则会成为trace_mm_page_free。类似这样的定义还特别多,大部分trace函数都是这么来的。值得注意的是__DECLARE_TRACE()不仅仅是定义实现了trace函数,同时还定义实现了trace函数的注册及去注册。
诸如此函数的还有trace_mm_page_pcpu_drain等函数。