Chinaunix首页 | 论坛 | 博客
  • 博客访问: 294439
  • 博文数量: 44
  • 博客积分: 10
  • 博客等级: 民兵
  • 技术积分: 1354
  • 用 户 组: 普通用户
  • 注册时间: 2012-04-08 15:38
个人简介

人生像是在跑马拉松,能够完赛的都是不断地坚持向前迈进;人生就是像在跑马拉松,不断调整步伐,把握好分分秒秒;人生还是像在跑马拉松,能力决定了能跑短程、半程还是全程。人生其实就是一场马拉松,坚持不懈,珍惜时间。

文章分类

分类: LINUX

2014-11-02 16:26:19

    前面的前奏已经分析介绍了建立内核页表相关变量的设置准备,接下来转入正题分析内核页表的建立。

    建立内核页表的关键函数init_mem_mapping()

  1. 【file:/arch/x86/mm/init.c】
  2. void __init init_mem_mapping(void)
  3. {
  4.     unsigned long end;
  5.  
  6.     probe_page_size_mask();
  7.  
  8. #ifdef CONFIG_X86_64
  9.     end = max_pfn << PAGE_SHIFT;
  10. #else
  11.     end = max_low_pfn << PAGE_SHIFT;
  12. #endif
  13.  
  14.     /* the ISA range is always mapped regardless of memory holes */
  15.     init_memory_mapping(0, ISA_END_ADDRESS);
  16.  
  17.     /*
  18.      * If the allocation is in bottom-up direction, we setup direct mapping
  19.      * in bottom-up, otherwise we setup direct mapping in top-down.
  20.      */
  21.     if (memblock_bottom_up()) {
  22.         unsigned long kernel_end = __pa_symbol(_end);
  23.  
  24.         /*
  25.          * we need two separate calls here. This is because we want to
  26.          * allocate page tables above the kernel. So we first map
  27.          * [kernel_end, end) to make memory above the kernel be mapped
  28.          * as soon as possible. And then use page tables allocated above
  29.          * the kernel to map [ISA_END_ADDRESS, kernel_end).
  30.          */
  31.         memory_map_bottom_up(kernel_end, end);
  32.         memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  33.     } else {
  34.         memory_map_top_down(ISA_END_ADDRESS, end);
  35.     }
  36.  
  37. #ifdef CONFIG_X86_64
  38.     if (max_pfn > max_low_pfn) {
  39.         /* can we preseve max_low_pfn ?*/
  40.         max_low_pfn = max_pfn;
  41.     }
  42. #else
  43.     early_ioremap_page_table_range_init();
  44. #endif
  45.  
  46.     load_cr3(swapper_pg_dir);
  47.     __flush_tlb_all();
  48.  
  49.     early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  50. }

    其中probe_page_size_mask()实现:

  1. 【file:/arch/x86/mm/init.c】
  2. static void __init probe_page_size_mask(void)
  3. {
  4.     init_gbpages();
  5.  
  6. #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
  7.     /*
  8.      * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  9.      * This will simplify cpa(), which otherwise needs to support splitting
  10.      * large pages into small in interrupt context, etc.
  11.      */
  12.     if (direct_gbpages)
  13.         page_size_mask |= 1 << PG_LEVEL_1G;
  14.     if (cpu_has_pse)
  15.         page_size_mask |= 1 << PG_LEVEL_2M;
  16. #endif
  17.  
  18.     /* Enable PSE if available */
  19.     if (cpu_has_pse)
  20.         set_in_cr4(X86_CR4_PSE);
  21.  
  22.     /* Enable PGE if available */
  23.     if (cpu_has_pge) {
  24.         set_in_cr4(X86_CR4_PGE);
  25.         __supported_pte_mask |= _PAGE_GLOBAL;
  26.     }
  27. }

    probe_page_size_mask()主要作用是初始化直接映射变量(在init_gbpages()里面)和对page_size_mask变量进行设置,以及根据配置来控制CR4寄存器的置位,用于后面分页时的页面大小情况判定。

    回到init_mem_mapping()继续往下走,接着是init_memory_mapping(),其中入参ISA_END_ADDRESS表示ISA总线上设备的地址末尾。

    init_mem_mapping()实现:

  1. 【file:/arch/x86/mm/init.c】
  2. /*
  3.  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  4.  * This runs before bootmem is initialized and gets pages directly from
  5.  * the physical memory. To access them they are temporarily mapped.
  6.  */
  7. unsigned long __init_refok init_memory_mapping(unsigned long start,
  8.                            unsigned long end)
  9. {
  10.     struct map_range mr[NR_RANGE_MR];
  11.     unsigned long ret = 0;
  12.     int nr_range, i;
  13.  
  14.     pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  15.            start, end - 1);
  16.  
  17.     memset(mr, 0, sizeof(mr));
  18.     nr_range = split_mem_range(mr, 0, start, end);
  19.  
  20.     for (i = 0; i < nr_range; i++)
  21.         ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  22.                            mr[i].page_size_mask);
  23.  
  24.     add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  25.  
  26.     return ret >> PAGE_SHIFT;
  27. }

    init_mem_mapping()里面关键操作有三个split_mem_range()kernel_physical_mapping_init()add_pfn_range_mapped()函数。

    首先分析一下split_mem_range()

  1. 【file:/arch/x86/mm/init.c】
  2. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  3.                      unsigned long start,
  4.                      unsigned long end)
  5. {
  6.     unsigned long start_pfn, end_pfn, limit_pfn;
  7.     unsigned long pfn;
  8.     int i;
  9.  
  10.     limit_pfn = PFN_DOWN(end);
  11.  
  12.     /* head if not big page alignment ? */
  13.     pfn = start_pfn = PFN_DOWN(start);
  14. #ifdef CONFIG_X86_32
  15.     /*
  16.      * Don't use a large page for the first 2/4MB of memory
  17.      * because there are often fixed size MTRRs in there
  18.      * and overlapping MTRRs into large pages can cause
  19.      * slowdowns.
  20.      */
  21.     if (pfn == 0)
  22.         end_pfn = PFN_DOWN(PMD_SIZE);
  23.     else
  24.         end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  25. #else /* CONFIG_X86_64 */
  26.     end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  27. #endif
  28.     if (end_pfn > limit_pfn)
  29.         end_pfn = limit_pfn;
  30.     if (start_pfn < end_pfn) {
  31.         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  32.         pfn = end_pfn;
  33.     }
  34.  
  35.     /* big page (2M) range */
  36.     start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  37. #ifdef CONFIG_X86_32
  38.     end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  39. #else /* CONFIG_X86_64 */
  40.     end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  41.     if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  42.         end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  43. #endif
  44.  
  45.     if (start_pfn < end_pfn) {
  46.         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  47.                 page_size_mask & (1<<PG_LEVEL_2M));
  48.         pfn = end_pfn;
  49.     }
  50.  
  51. #ifdef CONFIG_X86_64
  52.     /* big page (1G) range */
  53.     start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  54.     end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  55.     if (start_pfn < end_pfn) {
  56.         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  57.                 page_size_mask &
  58.                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  59.         pfn = end_pfn;
  60.     }
  61.  
  62.     /* tail is not big page (1G) alignment */
  63.     start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  64.     end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  65.     if (start_pfn < end_pfn) {
  66.         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  67.                 page_size_mask & (1<<PG_LEVEL_2M));
  68.         pfn = end_pfn;
  69.     }
  70. #endif
  71.  
  72.     /* tail is not big page (2M) alignment */
  73.     start_pfn = pfn;
  74.     end_pfn = limit_pfn;
  75.     nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  76.  
  77.     if (!after_bootmem)
  78.         adjust_range_page_size_mask(mr, nr_range);
  79.  
  80.     /* try to merge same page size and continuous */
  81.     for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  82.         unsigned long old_start;
  83.         if (mr[i].end != mr[i+1].start ||
  84.             mr[i].page_size_mask != mr[i+1].page_size_mask)
  85.             continue;
  86.         /* move it */
  87.         old_start = mr[i].start;
  88.         memmove(&mr[i], &mr[i+1],
  89.             (nr_range - 1 - i) * sizeof(struct map_range));
  90.         mr[i--].start = old_start;
  91.         nr_range--;
  92.     }
  93.  
  94.     for (i = 0; i < nr_range; i++)
  95.         printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
  96.                 mr[i].start, mr[i].end - 1,
  97.             (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  98.              (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  99.  
  100.     return nr_range;
  101. }

    split_mem_range()根据传入的内存startend做四舍五入的对齐操作(即round_upround_down),并根据对齐的情况,把开始、末尾的不对齐部分及中间部分分成了三段,使用save_mr()将其存放在init_mem_mapping()的局部变量数组mr中。划分开来主要是为了允许各部分可以映射不同页面大小,然后如果各划分开来的部分是连续的,映射页面大小也是一致的,则将其合并。最后将映射的情况打印出来,在shell上使用dmesg命令可以看到该打印信息,样例:

    接下来看kernel_physical_mapping_init():

  1. 【file:/arch/x86/mm/init.c】
  2. /*
  3.  * This maps the physical memory to kernel virtual address space, a total
  4.  * of max_low_pfn pages, by creating page tables starting from address
  5.  * PAGE_OFFSET:
  6.  */
  7. unsigned long __init
  8. kernel_physical_mapping_init(unsigned long start,
  9.                  unsigned long end,
  10.                  unsigned long page_size_mask)
  11. {
  12.     int use_pse = page_size_mask == (1<<PG_LEVEL_2M);
  13.     unsigned long last_map_addr = end;
  14.     unsigned long start_pfn, end_pfn;
  15.     pgd_t *pgd_base = swapper_pg_dir;
  16.     int pgd_idx, pmd_idx, pte_ofs;
  17.     unsigned long pfn;
  18.     pgd_t *pgd;
  19.     pmd_t *pmd;
  20.     pte_t *pte;
  21.     unsigned pages_2m, pages_4k;
  22.     int mapping_iter;
  23.  
  24.     start_pfn = start >> PAGE_SHIFT;
  25.     end_pfn = end >> PAGE_SHIFT;
  26.  
  27.     /*
  28.      * First iteration will setup identity mapping using large/small pages
  29.      * based on use_pse, with other attributes same as set by
  30.      * the early code in head_32.S
  31.      *
  32.      * Second iteration will setup the appropriate attributes (NX, GLOBAL..)
  33.      * as desired for the kernel identity mapping.
  34.      *
  35.      * This two pass mechanism conforms to the TLB app note which says:
  36.      *
  37.      * "Software should not write to a paging-structure entry in a way
  38.      * that would change, for any linear address, both the page size
  39.      * and either the page frame or attributes."
  40.      */
  41.     mapping_iter = 1;
  42.  
  43.     if (!cpu_has_pse)
  44.         use_pse = 0;
  45.  
  46. repeat:
  47.     pages_2m = pages_4k = 0;
  48.     pfn = start_pfn;
  49.     pgd_idx = pgd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
  50.     pgd = pgd_base + pgd_idx;
  51.     for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
  52.         pmd = one_md_table_init(pgd);
  53.  
  54.         if (pfn >= end_pfn)
  55.             continue;
  56. #ifdef CONFIG_X86_PAE
  57.         pmd_idx = pmd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
  58.         pmd += pmd_idx;
  59. #else
  60.         pmd_idx = 0;
  61. #endif
  62.         for (; pmd_idx < PTRS_PER_PMD && pfn < end_pfn;
  63.              pmd++, pmd_idx++) {
  64.             unsigned int addr = pfn * PAGE_SIZE + PAGE_OFFSET;
  65.  
  66.             /*
  67.              * Map with big pages if possible, otherwise
  68.              * create normal page tables:
  69.              */
  70.             if (use_pse) {
  71.                 unsigned int addr2;
  72.                 pgprot_t prot = PAGE_KERNEL_LARGE;
  73.                 /*
  74.                  * first pass will use the same initial
  75.                  * identity mapping attribute + _PAGE_PSE.
  76.                  */
  77.                 pgprot_t init_prot =
  78.                     __pgprot(PTE_IDENT_ATTR |
  79.                          _PAGE_PSE);
  80.  
  81.                 pfn &= PMD_MASK >> PAGE_SHIFT;
  82.                 addr2 = (pfn + PTRS_PER_PTE-1) * PAGE_SIZE +
  83.                     PAGE_OFFSET + PAGE_SIZE-1;
  84.  
  85.                 if (is_kernel_text(addr) ||
  86.                     is_kernel_text(addr2))
  87.                     prot = PAGE_KERNEL_LARGE_EXEC;
  88.  
  89.                 pages_2m++;
  90.                 if (mapping_iter == 1)
  91.                     set_pmd(pmd, pfn_pmd(pfn, init_prot));
  92.                 else
  93.                     set_pmd(pmd, pfn_pmd(pfn, prot));
  94.  
  95.                 pfn += PTRS_PER_PTE;
  96.                 continue;
  97.             }
  98.             pte = one_page_table_init(pmd);
  99.  
  100.             pte_ofs = pte_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
  101.             pte += pte_ofs;
  102.             for (; pte_ofs < PTRS_PER_PTE && pfn < end_pfn;
  103.                  pte++, pfn++, pte_ofs++, addr += PAGE_SIZE) {
  104.                 pgprot_t prot = PAGE_KERNEL;
  105.                 /*
  106.                  * first pass will use the same initial
  107.                  * identity mapping attribute.
  108.                  */
  109.                 pgprot_t init_prot = __pgprot(PTE_IDENT_ATTR);
  110.  
  111.                 if (is_kernel_text(addr))
  112.                     prot = PAGE_KERNEL_EXEC;
  113.  
  114.                 pages_4k++;
  115.                 if (mapping_iter == 1) {
  116.                     set_pte(pte, pfn_pte(pfn, init_prot));
  117.                     last_map_addr = (pfn << PAGE_SHIFT) + PAGE_SIZE;
  118.                 } else
  119.                     set_pte(pte, pfn_pte(pfn, prot));
  120.             }
  121.         }
  122.     }
  123.     if (mapping_iter == 1) {
  124.         /*
  125.          * update direct mapping page count only in the first
  126.          * iteration.
  127.          */
  128.         update_page_count(PG_LEVEL_2M, pages_2m);
  129.         update_page_count(PG_LEVEL_4K, pages_4k);
  130.  
  131.         /*
  132.          * local global flush tlb, which will flush the previous
  133.          * mappings present in both small and large page TLB's.
  134.          */
  135.         __flush_tlb_all();
  136.  
  137.         /*
  138.          * Second iteration will set the actual desired PTE attributes.
  139.          */
  140.         mapping_iter = 2;
  141.         goto repeat;
  142.     }
  143.     return last_map_addr;
  144. }

    kernel_physical_mapping_init()是建立内核页表的一个关键函数,就是它负责处理物理内存的映射。swapper_pg_dir(来自于/arch/x86/kernel/head_32.s)就是页全局目录的空间了。而页表目录的空间则来自于调用one_page_table_init()申请而得,而one_page_table_init()则是通过调用关系:one_page_table_init()->alloc_low_page()->alloc_low_pages()->memblock_reserve()最后申请而得,同时页全局目录项的熟悉也在这里设置完毕,详细代码这里就不分析了。回到kernel_physical_mapping_init()代码中,该函数里面有个标签repeat,通过mapping_iter结合goto语句的控制,该标签下的代码将会执行两次。第一次执行时,内存映射设置如同head_32.s里面的一样,将页面属性设置为PTE_IDENT_ATTR;第二次执行时,会根据内核的情况设置具体的页面属性,默认是设置为PAGE_KERNEL,但如果经过is_kernel_text判断为内核代码空间,则设置为PAGE_KERNEL_EXEC。最终建立内核页表的同时,完成内存映射。

     继续init_memory_mapping()的最后一个关键调用函数add_pfn_range_mapped()

  1. 【file:/arch/x86/mm/init.c】
  2. struct range pfn_mapped[E820_X_MAX];
  3. int nr_pfn_mapped;
  4.  
  5. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  6. {
  7.     nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
  8.                          nr_pfn_mapped, start_pfn, end_pfn);
  9.     nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
  10.  
  11.     max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  12.  
  13.     if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  14.         max_low_pfn_mapped = max(max_low_pfn_mapped,
  15.                      min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  16. }

    该函数主要是将新增内存映射的物理页框范围加入到全局数组pfn_mapped中,其中nr_pfn_mapped用于表示数组中的有效项数量。由此一来,则可以通过内核函数pfn_range_is_mapped来判断指定的物理内存是否被映射,避免了重复映射的情况。

    回到init_mem_mapping()继续往下,此时memblock_bottom_up()返回的memblock.bottom_up值仍为false,所以接着走的是else分支,调用memory_map_top_down(),入参为ISA_END_ADDRESSend。其中end则是通过max_low_pfn << PAGE_SHIFT被设置为内核直接映射的最后页框所对应的地址。

    memory_map_top_down()代码实现:

  1. 【file:/arch/x86/mm/init.c】
  2. /**
  3.  * memory_map_top_down - Map [map_start, map_end) top down
  4.  * @map_start: start address of the target memory range
  5.  * @map_end: end address of the target memory range
  6.  *
  7.  * This function will setup direct mapping for memory range
  8.  * [map_start, map_end) in top-down. That said, the page tables
  9.  * will be allocated at the end of the memory, and we map the
  10.  * memory in top-down.
  11.  */
  12. static void __init memory_map_top_down(unsigned long map_start,
  13.                        unsigned long map_end)
  14. {
  15.     unsigned long real_end, start, last_start;
  16.     unsigned long step_size;
  17.     unsigned long addr;
  18.     unsigned long mapped_ram_size = 0;
  19.     unsigned long new_mapped_ram_size;
  20.  
  21.     /* xen has big range in reserved near end of ram, skip it at first.*/
  22.     addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  23.     real_end = addr + PMD_SIZE;
  24.  
  25.     /* step_size need to be small so pgt_buf from BRK could cover it */
  26.     step_size = PMD_SIZE;
  27.     max_pfn_mapped = 0; /* will get exact value next */
  28.     min_pfn_mapped = real_end >> PAGE_SHIFT;
  29.     last_start = start = real_end;
  30.  
  31.     /*
  32.      * We start from the top (end of memory) and go to the bottom.
  33.      * The memblock_find_in_range() gets us a block of RAM from the
  34.      * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  35.      * for page table.
  36.      */
  37.     while (last_start > map_start) {
  38.         if (last_start > step_size) {
  39.             start = round_down(last_start - 1, step_size);
  40.             if (start < map_start)
  41.                 start = map_start;
  42.         } else
  43.             start = map_start;
  44.         new_mapped_ram_size = init_range_memory_mapping(start,
  45.                             last_start);
  46.         last_start = start;
  47.         min_pfn_mapped = last_start >> PAGE_SHIFT;
  48.         /* only increase step_size after big range get mapped */
  49.         if (new_mapped_ram_size > mapped_ram_size)
  50.             step_size = get_new_step_size(step_size);
  51.         mapped_ram_size += new_mapped_ram_size;
  52.     }
  53.  
  54.     if (real_end < map_end)
  55.         init_range_memory_mapping(real_end, map_end);
  56. }

    memory_map_top_down()首先使用memblock_find_in_range尝试查找内存,PMD_SIZE大小的内存(4M),确认建立页表的空间足够,然后开始建立页表,其关键函数是init_range_memory_mapping(),该函数的实现:

  1. 【file:/arch/x86/mm/init.c】
  2. /*
  3.  * We need to iterate through the E820 memory map and create direct mappings
  4.  * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
  5.  * create direct mappings for all pfns from [0 to max_low_pfn) and
  6.  * [4GB to max_pfn) because of possible memory holes in high addresses
  7.  * that cannot be marked as UC by fixed/variable range MTRRs.
  8.  * Depending on the alignment of E820 ranges, this may possibly result
  9.  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  10.  *
  11.  * init_mem_mapping() calls init_range_memory_mapping() with big range.
  12.  * That range would have hole in the middle or ends, and only ram parts
  13.  * will be mapped in init_range_memory_mapping().
  14.  */
  15. static unsigned long __init init_range_memory_mapping(
  16.                        unsigned long r_start,
  17.                        unsigned long r_end)
  18. {
  19.     unsigned long start_pfn, end_pfn;
  20.     unsigned long mapped_ram_size = 0;
  21.     int i;
  22.  
  23.     for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  24.         u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  25.         u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  26.         if (start >= end)
  27.             continue;
  28.  
  29.         /*
  30.          * if it is overlapping with brk pgt, we need to
  31.          * alloc pgt buf from memblock instead.
  32.          */
  33.         can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  34.                     min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  35.         init_memory_mapping(start, end);
  36.         mapped_ram_size += end - start;
  37.         can_use_brk_pgt = true;
  38.     }
  39.  
  40.     return mapped_ram_size;
  41. }

    可以看到init_range_memory_mapping()调用了前面刚分析的init_memory_mapping()函数,由此可知,它将完成内核直接映射区(低端内存)的页表建立。此外可以注意到pgt_buf_endpgt_buf_top的使用,在init_memory_mapping()函数调用前,变量can_use_brk_pgt的设置主要是为了避免内存空间重叠,仍然使用页表缓冲区空间。不过这只是64bit系统上才会出现的情况,而32bit系统上面则没有,因为32bit系统的kernel_physical_mapping_init()并不使用alloc_low_page()申请内存,所以不涉及。

    至此,内核低端内存页表建立完毕。



阅读(3907) | 评论(2) | 转发(2) |
给主人留下些什么吧!~~

jiefeng_zhang2016-01-31 18:05:46

jiefeng_zhang:想问个问题,one_page_table_init()或one_pmd_table_init() 函数,我看了下代码,返回的
是3G+的地址空间,并在该空间对应的PTE和PMD表中设置表现值;如果上面说的没错的话,此时的
PTE和PMD表怎么会是在3G+的位置存在呢?多谢!希望可以解答的给与赐教

“设置表项值”

回复 | 举报

jiefeng_zhang2016-01-31 18:05:07

想问个问题,one_page_table_init()或one_pmd_table_init() 函数,我看了下代码,返回的
是3G+的地址空间,并在该空间对应的PTE和PMD表中设置表现值;如果上面说的没错的话,此时的
PTE和PMD表怎么会是在3G+的位置存在呢?多谢!希望可以解答的给与赐教