Chinaunix首页 | 论坛 | 博客
  • 博客访问: 2855802
  • 博文数量: 471
  • 博客积分: 7081
  • 博客等级: 少将
  • 技术积分: 5369
  • 用 户 组: 普通用户
  • 注册时间: 2012-01-04 21:55
文章分类

全部博文(471)

文章存档

2014年(90)

2013年(69)

2012年(312)

分类: Python/Ruby

2013-03-04 10:24:23

Python引入了一个机制:引用计数

python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。

总结一下对象会在一下情况下引用计数加1:

1.对象被创建:x=4

2.另外的别人被创建:y=x

3.被作为参数传递给函数:foo(x)

4.作为容器对象的一个元素:a=[1,x,'33']

引用计数减少情况

1.一个本地引用离开了它的作用域。比如上面的foo(x)函数结束时,x指向的对象引用减1。

2.对象的别名被显式的销毁:del x ;或者del y

3.对象的一个别名被赋值给其他对象:x=789

4.对象从一个窗口对象中移除:myList.remove(x)

5.窗口对象本身被销毁:del myList,或者窗口对象本身离开了作用域。


垃圾回收

1、当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。

2、垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。


在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。

内存池机制


Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。

Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的 malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。


在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响 Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。这也就是之前提到的 Pymalloc机制。 





阅读(6792) | 评论(0) | 转发(3) |
给主人留下些什么吧!~~