RSA 是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的 可信性,目前它已经成为最流行的公开密钥算法。 RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:
三、什么是模指数运算? 指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。 模指数运算就是先做指数运算,取其结果再做模运算。如 好,现在开始正式讲解RSA加密算法。 算法描述: (1)选择一对不同的、足够大的素数p,q。 (2)计算n=pq。 (3)计算f(n)=(p-1)(q-1),同时对p, q严加保密,不让任何人知道。 (4)找一个与f(n)互质的数e,且1 (5)计算d,使得de≡1 mod f(n)。这个公式也可以表达为d ≡e-1 mod f(n) 这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号 右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。 (6)公钥KU=(e,n),私钥KR=(d,n)。 (7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:。 (8)解密过程为:。
实例描述: 在这篇科普小文章里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下: (1)设计公私密钥(e,n)和(d,n)。 令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。 d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:
通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。 (2)英文数字化。 将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即: