Chinaunix首页 | 论坛 | 博客
  • 博客访问: 1014664
  • 博文数量: 128
  • 博客积分: 10012
  • 博客等级: 上将
  • 技术积分: 2050
  • 用 户 组: 普通用户
  • 注册时间: 2008-10-15 17:49
文章分类

全部博文(128)

文章存档

2011年(16)

2009年(57)

2008年(55)

分类:

2008-11-03 17:08:03

第一题 .  海盗分金
五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。他们决定这么分:  抽签决定自己的号码(1、2、3、4、5)。首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案
进行分配,否则将被扔进大海喂鲨鱼。如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼。依此类推。
  条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。
  问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?

第二题 . 一道关于飞机加油的问题,已知:每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)。一箱油可供一架飞机绕地球飞半圈,问题:
  为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)

第三题. 汽车加油问题
  一辆载油500升的汽车从A开往1000公里外的B,已知汽车每公里耗油量为1升,A处有无穷多的油,其他任何地点都没有油,但该车可以在任何地点存放油以备中转,问从A到B最少需要多少油

第四题. 掷杯问题
  一种杯子,若在第N层被摔破,则在任何比N高的楼层均会破,若在第M层不破,则在任何比M低的楼层均会破,给你两个这样的杯子,让你在100层高的楼层中测试,要求用最少的测试次数找出恰巧会使杯子破碎的楼层。

第五题. 推理游戏

  教授选出两个从2到9的数,把它们的和告诉学生甲,把它们的积告诉学生乙,让他们轮流猜这两个数
  甲说:“我猜不出”
  乙说:“我猜不出”
  甲说:“我猜到了”
  乙说:“我也猜到了”

  问这两个数是多少

第六题. 病狗问题
一 个住宅区内有100户人家,每户人家养一条狗,每天傍晚大家都在同一个地方遛狗。已知这些狗中有一部分病狗,由于某种原因,狗的主人无法判断自己的狗是否 是病狗,却能够分辨其他的狗是否有病,现在,上级传来通知,要求住户处决这些病狗,并且不允许指认他人的狗是病狗(就是只能判断自己的),过了7天之后, 所有的病狗都被处决了,问,一共有几只病狗?为什么?

第七题. 最短时间过桥
U2 合唱团在17分钟内得赶到演唱会场,途中必需跨过一座桥,四个人从桥的同一端出发,你得帮助他们到达另一端,天色很暗,而他们只有一只手电筒。一次同时最 多可以有两人一起过桥,而过桥的时候必须持有手电筒,所以就得有人把手电筒带来带去,来回桥两端。手电筒是不能用丢的方式来传递的。四个人的步行速度各不 同,若两人同行则以较慢者的速度为准。BONO需花1分钟过桥,EDGE需花2分钟过桥,ADAM需花5分钟过桥,LARRY需花10分钟过桥,他们要如 何在17分钟内过桥呢?

第八题. 释放囚徒
监 狱里有100个房间,每个房间内有一囚犯。一天,监狱长说,你们狱房外有一电灯,你们在放风时可以控制这个电灯(熄或亮)。每天只能有一个人出来放风,并 且防风是随机的。如果在有限时间内,你们中的某人能对我说:“我敢保证,现在每个人都已经至少放过一次风了。”我就放了你们!问囚犯们要采取什么策略才能 被监狱长放掉?如果采用了这种策略,大致多久他们可以被释放?

参考答案:
第一题:抓住条件“当且仅当半数和超过半数的 人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。”假定最后只剩4,5两个强盗,那5肯定一无所有,因为4肯定会拿走所有宝石;所以当只有3, 4,5三个强盗时,3只要给5一颗宝石,5就不会否决他,只要5不否决他,3就不会被否决,这样3个人的时候,分配是99-0-1;同样,当只有2,3, 4,5四个强盗时,2为了不被否决,只要给4一颗宝石,就能得到4的支持,而3就没有用了,这时的分配时99-0-1-0。当5个人都在的时候,1只要得 到3和5两个人的支持就可以,所以只要给3一颗宝石,5一个宝石,就能得到3和5的支持,所以分配时98-0-1-0-1。


第 二题:3架飞机5架次,飞法: ABC 3架同时起飞,1/8处,C给AB加满油,C返航,1/4处,B给A加满油,B返航,A到达1/2处,C从机场往另一方向起飞,3/4处,C同已经空油箱 的A平分剩余油量,同时B从机场起飞,AC到7/8处同B平分剩余油量,刚好3架飞机同时返航。所以是3架飞机5架次。

第三题:需要建立数学模型
  (提示,严格证明该模型最优比较麻烦,但确实可证,大胆猜想是解题关键)
  题目可归结为求数列 an=500/(2n+1) n=0,1,2,3......的和Sn什么时候大于等于1000,解得n>6
  当n=6时,S6=977.57
  所以第一个中转点离起始位置距离为1000-977.57=22.43公里
  所以第一次中转之前共耗油 22.43*(2*7+1)=336.50升
  此后每次中转耗油500升
  所以总耗油量为7*500+336.50=3836.50升

第四题:需要建立数学模型
  题目可归结为求自然数列的和S什么时候大于等于100,解得n>13
  第一个杯子可能的投掷楼层分别为:14,27,39,50,60,69,77,84,90,95,99,100

第五题:3和4(可严格证明)
  设两个数为n1,n2,n1>=n2,甲听到的数为n=n1+n2,乙听到的数为m=n1*n2
  证明n1=3,n2=4是唯一解
  证明:要证以上命题为真,不妨先证n=7
  1)必要性:
  i) n>5 是显然的,因为n<4不可能,n=4或者n=5甲都不可能回答不知道
  ii) n>6 因为如果n=6的话,那么甲虽然不知道(不确定2+4还是3+3)但是无论是2,4还是3,3乙都不可能说不知道(m=8或者m=9的话乙说不知道是没有道理的)
  iii) n<8 因为如果n>=8的话,就可以将n分解成 n=4+x 和 n=6+(x-2),那么m可以是4x也可以是6(x-2)而4x=6(x-2)的必要条件是x=6即n=10,那样n又可以分解成8+2,所以总之当 n>=8时,n至少可以分解成两种不同的合数之和,这样乙说不知道的时候,甲就没有理由马上说知道。
  以上证明了必要性
  2)充分性
  当n=7时,n可以分解成2+5或3+4
  显然2+5不符合题意,舍去,容易判断出3+4符合题意,m=12,证毕
  于是得到n=7 m=12 n1=3 n2=4是唯一解。

第六题:7只(数学归纳法证明)
  1)若只有1只病狗,因为病狗主人看不到有其他病狗,必然会知道自己的狗是病狗(前提是一定存在病狗),所以他会在第一天把病狗处决。
  2)设有k只病狗的话,会在第k天被处决,那么,如果有k+1只,病狗的主人只会看到k只病狗,而第k天没有人处决病狗,病狗主人就会在第k+1天知道自己的狗是病狗,于是病狗在第k+1天被处决
  3)由1)2)得,若有n只病狗,必然在第n天被处决

第七题:(提示:可用图论方法解决)

  BONO&EDGE过(2分),BONO将手电带回(1分),ADAM&LARRY过(10分),EDGE将手电带回(2分),BONO&EDGE过(2分) 2+1+10+2+2=17分钟

第八题: 约定好一个人作为报告人(可以是第一个放风的人)

  规则如下:

  1、报告人放风的时候开灯并数开灯次数
  2、其他人第一次遇到开着灯放风时,将灯关闭
  3、当报告人第100次开灯的时候,去向监狱长报告,要求监狱长放人......
  按照概率大约30年后(10000天)他们可以被释放


阅读(2262) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~