tiaot

tiaot tiaot daily: move move body: good good study: day day happy

  • 博客访问: 763002
  • 博文数量: 527
  • 博客积分: 10086
  • 博客等级: 上将
  • 技术积分: 5275
  • 用 户 组: 普通用户
  • 注册时间: 2007-05-13 10:50
文章分类

全部博文(527)

文章存档

2011年(2)

2009年(47)

2008年(266)

2007年(212)

我的朋友
微信关注

IT168企业级官微



微信号:IT168qiye



系统架构师大会



微信号:SACC2013

订阅
hash (zz) 2008-12-30 20:37:50

分类: C/C++

    hashing定义了一种将字符组成的字符串转换为固定长度(一般是更短长度)的数值或索引值的方法,称为散列法,也叫哈希法。由于通过更短的哈希值比用原始值进行数据库搜索更快,这种方法一般用来在数据库中建立索引并进行搜索,同时还用在各种解密算法中。
  设所有可能出现的关键字集合记为u(简称全集)。实际发生(即实际存储)的关键字集合记为k(|k|比|u|小得多)。|k|是集合k中元素的个数。
  散列方法是使用函数hash将u映射到表t[0..m-1]的下标上(m=o(|u|))。这样以u中关键字为自变量,以h为函数的运算结果就是相应结点的存储地址。从而达到在o(1)时间内就可完成查找。
  其中:
  ① hash:u→{0,1,2,…,m-1} ,通常称h为散列函数(hash function)。散列函数h的作用是压缩待处理的下标范围,使待处理的|u|个值减少到m个值,从而降低空间开销。
  ② t为散列表(hash table)。
  ③ hash(ki)(ki∈u)是关键字为ki结点存储地址(亦称散列值或散列地址)。
  ④ 将结点按其关键字的散列地址存储到散列表中的过程称为散列(hashing).
  比如:有一组数据包括用户名字、电话、住址等,为了快速的检索,我们可以利用名字作为关键 码,hash规则就是把名字中每一个字的拼音的第一个字母拿出来,把该字母在26个字母中的顺序值取出来加在一块作为改记录的地址。比如张三,就是 z+s=26+19=45。就是把张三存在地址为45处。
  但是这样存在一个问题,比如假如有个用户名字叫做:周四,那么计算它的地址时也是z+s=45,这样它与张三就有相同的地址,这就是冲突,也叫作碰撞!
  冲突:两个不同的关键字,由于散列函数值相同,因而被映射到同一表位置上。该现象称为冲突(collision)或碰撞。发生冲突的两个关键字称为该散列函数的同义词(synonym)。
  冲突基本上不可避免的,除非数据很少,我们只能采取措施尽量避免冲突,或者寻找解决冲突的办法。影响冲突的因素
  冲突的频繁程度除了与h相关外,还与表的填满程度相关。
  设m和n分别表示表长和表中填人的结点数,则将α=n/m定义为散列表的装填因子(load factor)。α越大,表越满,冲突的机会也越大。通常取α≤1。
  散列函数的构造方法:
  1、散列函数的选择有两条标准:简单和均匀。
  简单指散列函数的计算简单快速;
  均匀指对于关键字集合中的任一关键字,散列函数能以等概率将其映射到表空间的任何一个位置上。也就是说,散列函数能将子集k随机均匀地分布在表的地址集{0,1,…,m-1}上,以使冲突最小化。
  2、常用散列函数
  (1)直接定址法:比如在一个0~100岁的年龄统计表,我们就可以把年龄作为地址。
  (2)平方取中法
  具体方法:先通过求关键字的平方值扩大相近数的差别,然后根据表长度取中间的几位数作为散列函数值。又因为一个乘积的中间几位数和乘数的每一位都相关,所以由此产生的散列地址较为均匀。
  (3)除留余数法
  取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。该方法的关键是选取m。选取的m应使得散列函数值尽可能与关键字的各位相关。m最好为素数(4)随机数法
  选择一个随机函数,取关键字的随机函数值为它的散列地址,即
  h(key)=random(key)
  其中random为伪随机函数,但要保证函数值是在0到m-1之间。
  处理冲突的方法:
  1、开放定址法
  hi=(h(key)+di) mod m i=1,2,...,k(k<=m-1)
  其中m为表长,di为增量序列
  如果di值可能为1,2,3,...m-1,称线性探测再散列。
  如果di取值可能为1,-1,2,-2,4,-4,9,-9,16,-16,...k*k,-k*k(k<=m/2)
  称二次探测再散列。
  如果di取值可能为伪随机数列。称伪随机探测再散列。开放地址法堆装填因子的要求
  开放定址法要求散列表的装填因子α≤l,实用中取α为0.5到0.9之间的某个值为宜。
  ②二次探查法(quadratic probing)
  二次探查法的探查序列是:
  hi=(h(key)+i*i)%m 0≤i≤m-1 //即di=i2
  即探查序列为d=h(key),d+12,d+22,…,等。
  该方法的缺陷是不易探查到整个散列空间。
  ③双重散列法(double hashing)
  该方法是开放定址法中最好的方法之一,它的探查序列是:
  hi=(h(key)+i*h1(key))%m 0≤i≤m-1 //即di=i*h1(key)
  即探查序列为:
  d=h(key),(d+h1(key))%m,(d+2h1(key))%m,…,等。
  该方法使用了两个散列函数h(key)和h1(key),故也称为双散列函数探查法。
  2、拉链法
  拉链法解决冲突的方法
  拉链法解决冲突的做法是:将所有关键字为同义词的结点链接在同一个单链表中。若选定的散列表长 度为m,则可将散列表定义为一个由m个头指针组成的指针数组t[0..m-1]。凡是散列地址为i的结点,均插入到以t为头指针的单链表中。t中各分量的 初值均应为空指针。在拉链法中,装填因子α可以大于1,但一般均取α≤1。
  3、建立一个公共溢出区
  假设哈希函数的值域为[0,m-1],则设向量hashtable[0..m-1]为基本表,另外设立存储空间向量overtable[0..v]用以存储发生冲突的记录。
  性能分析
  插入和删除的时间均取决于查找,故下面只分析查找操作的时间性能。
  虽然散列表在关键字和存储位置之间建立了对应关系,理想情况是无须关键字的比较就可找到待查关键字。但是由于冲突的存在,散列表的查找过程仍是一个和关键字比较的过程,不过散列表的平均查找长度比顺序查找、二分查找等完全依赖于关键字比较的查找要小得多。
  (1)查找成功的asl
  散列表上的查找优于顺序查找和二分查找。
  (2) 查找不成功的asl
  对于不成功的查找,顺序查找和二分查找所需进行的关键字比较次数仅取决于表长,而散列查找所需进行的关键字比较次数和待查结点有关。因此,在等概率情况下,也可将散列表在查找不成功时的平均查找长度,定义为查找不成功时对关键字需要执行的平均比较次数。
  注意:
  ①由同一个散列函数、不同的解决冲突方法构造的散列表,其平均查找长度是不相同的。
  ②散列表的平均查找长度不是结点个数n的函数,而是装填因子α的函数。因此在设计散列表时可选择α以控制散列表的平均查找长度。
  ③ α的取值
  α越小,产生冲突的机会就小,但α过小,空间的浪费就过多。只要α选择合适,散列表上的平均查找长度就是一个常数,即散列表上查找的平均时间为o(1)。
  ④ 散列法与其他查找方法的区别
  除散列法外,其他查找方法有共同特征为:均是建立在比较关键字的基础上。其中顺序查找是对无序 集合的查找,每次关键字的比较结果为"="或"!="两种可能,其平均时间为o(n);其余的查找均是对有序集合的查找,每次关键字的比较有"="、"& lt;"和">"三种可能,且每次比较后均能缩小下次的查找范围,故查找速度更快,其平均时间为o(lgn)。而散列法是根据关键字直接求出地址的 查找方法,其查找的期望时间为o(1)。
  例子:例子:选取哈希函数h(k)=(3k)%11,用线性探测再散列法处理冲突。
  试在0~10的散列地址空间中,对关键序列22,41,53,46,30,13,01,67构造哈希表,并求等概率情况下查找不成功的平均查找长度asl。
阅读(469) | 评论(0) | 转发(0) |
给主人留下些什么吧!~~
评论热议
请登录后评论。

登录 注册