以高斯信号为例,计算幅度谱、相位谱、双边功率谱、双边功率谱密度、单边功率谱、单边功率谱密度。(转载请注明出处)
MATLAB程序代码:
-
%==========================================================================
%Name: spectrum_analysis.m
%Desc: 以高斯信号为例,求解其频谱、双边功率谱、单边功率谱、双边功率谱密度、
% 单边功率谱密度,这里高斯信号的半波全宽FWHM=50ps,中心点位于2.5ns处。
%Parameter:
%Return:
%Author: yoyoba(stuyou@126.com)
%Date: 2015-4-28
%Modify: 2015-4-29
%=========================================================================
clc;
clear;
FWHM=50e-12; %高斯信号FWHM宽度,为50ps
time_window=100*FWHM; %高斯信号的采样窗口宽度,该值决定了傅里叶变换后的频率分辨率
Ns=2048; %采样点
dt=time_window/(Ns-1); %采样时间间隔
t=0:dt:time_window; %采样时间
gauss_time=exp(-0.5*(2*sqrt(2*log(2))*(t-2.5e-9)/FWHM).^2); %高斯脉冲,中心位于2.5ns处。
plot(t*1e+9,gauss_time,'linewidth',2.5);
xlabel('Time/ns');
ylabel('Amplitude/V');
title('Gauss pulse');
%===========以下计算双边谱、双边功率谱、双边功率谱密度=================
gauss_spec=fftshift(fft(ifftshift(gauss_time))); %傅里叶变换,并且进行fftshift移位操作。
gauss_spec=gauss_spec/Ns; %求实际的幅度值;
df=1/time_window; %频率分辨率
k=floor(-(Ns-1)/2:(Ns-1)/2);
% k=0:Ns-1;
double_f=k*df; %双边频谱对应的频点
figure; %幅度谱
plot(double_f*1e-9,abs(gauss_spec),'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Amplitude/V');
title('double Amplitude spectrum');
figure; %相位谱
plot(double_f*1e-9,angle(gauss_spec),'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Phase/rad');
title('double Phase spectrum');
figure; %功率谱
double_power_spec_W=abs(gauss_spec).^2; %双边功率谱,单位W;
double_power_spec_mW=double_power_spec_W*1e+3; %双边功率谱,单位mW;
double_power_spec_dBm=10*log10(double_power_spec_mW); %双边功率谱,单位dBm;
plot(double_f*1e-9,double_power_spec_dBm,'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Power/dBm');
title('double Power spectrum');
figure; %功率谱密度
double_power_specD_W=abs(gauss_spec).^2/(df); %双边功率谱密度,单位W/Hz
double_power_specD_mW=double_power_specD_W*1e+3; %双边功率谱密度,单位mW/Hz
double_power_specD_dBm=10*log10(double_power_specD_mW);%双边功率谱密度,单位dBm/Hz
plot(double_f*1e-9,double_power_specD_dBm,'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Power/(dBm/Hz)');
title('double power spectrum Density');
%==========以下计算单边谱、单边功率谱及单边功率谱密度=========
gauss_spec=fft(ifftshift(gauss_time)); %计算单边谱无需fftshift
gauss_spec=gauss_spec/Ns; %计算真实的幅度值
single_gauss_spec=gauss_spec(1:floor(Ns/2));
single_f=(0:floor(Ns/2)-1)*df;
figure; %幅度谱
plot(single_f*1e-9,abs(single_gauss_spec),'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Amplitude/V');
title('single Amplitude spectrum');
figure; %相位谱
plot(single_f*1e-9,angle(single_gauss_spec),'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Phase/rad');
title('single Phase spectrum');
figure;%功率谱
double_power_spec_W=abs(gauss_spec).^2;
single_power_spec_W=2*double_power_spec_W(1:floor(Ns/2)); %单边功率谱,单位W
single_power_spec_mW=single_power_spec_W*1e+3; %单边功率谱,单位mW;
single_power_spec_dBm=10*log10(single_power_spec_mW); %双边功率谱,单位dBm;
plot(single_f*1e-9,single_power_spec_dBm,'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Power/dBm');
title('single Power spectrum');
figure;%功率谱密度
double_power_specD_W=abs(gauss_spec).^2/(df);
single_power_specD_W=2*double_power_specD_W(1:floor(Ns/2)); %单边功率谱密度,单位W/Hz
single_power_specD_mW=single_power_specD_W*1e+3; %单边功率谱密度,单位mW/Hz
single_power_specD_dBm=10*log10(single_power_specD_mW); %单边功率谱密度,单位dBm/Hz
plot(single_f*1e-9,single_power_specD_mW,'linewidth',2.5);
xlabel('Frequency/GHz');
ylabel('Power/(dBm/Hz)');
title('single power spectrum density');
-
运行结果:
spectrum_analysis.rar
阅读(59546) | 评论(2) | 转发(3) |